Selecting Breakpoints

Minimizing breakpoints.
. Truck driver going from Princeton to Palo Alto along
predetermined route.

Refueling stations at certain points along the way.
. Truck fuel capacity = C.

Greedy algorithm.
. Go as far as you can before refueling.

< C > < C > < C > < C >

3 4 6 /

Princeton Palo Alto
< >

Selecting Breakpoints: Greedy Algorithm

Greedy Breakpoint Selection Algorithm

Sort breakpoi nts by increasing val ue:
0 =Db, <b, <b, <... <bh,.
S < {0} <:::S:breakpoints selected.
x =0
while (x # b,)
let p be largest integer such that b, < x + C
if (b, = x)
return "no solution"
X bp
S « S0 {p}
return S

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Let0=gy <g;< ...<g, =L denote set of breakpoints chosen by
greedy and assume it is not optimal.

. Let0=fy<f;<...<f,=L denote set of breakpoints in optimal
solution with f, =94, f;=9,,...,f =g, for largest possible value of r.

. Note: g <p.

gO 9; P g,
Greedy: 1 2 <! 4 5 “ 8 [9

OPT: 1 2 34 5 6 [7 |
f, f, f, f f,

r=4

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Let0=gy <g;< ...<g, =L denote set of breakpoints chosen by
greedy and assume it is not optimal.

. Let0=fy<f;<...<f,=L denote set of breakpoints in optimal
solution with f, =94, f;=9,,...,f =g, for largest possible value of r.

. Note: g <p.

9o 9, 9>
Greedy: 1 2 3 4 I 6 819

OPT:

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Let0=gy <g;< ...<g, =L denote set of breakpoints chosen by
greedy and assume it is not optimal.

. Let0=fy<f;<...<f,=L denote set of breakpoints in optimal
solution with f, =94, f;=9,,...,f =g, for largest possible value of r.

. Note: g <p.

. Thus, fo=9g0, f,=0;,...,f; =94

Minimizing Lateness

Minimizing lateness problem.

. Single resource can process one job at a time.

. njobs to be processed.
- Job j requires p; units of processing time.
- Job j has due date d;.
If we assign job j to start at time s;, it finishes at time f; = s; + p;.
Lateness: ;=max {0, f;-d;}.

. Goal: schedule all jobs to minimize maximum lateness L = max ¢;.

d=9 d=15 d=11

eteness 3~ BT [d=c] ICECEE

d = O I=i:! d=2 d=6 d=11 d=9

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimizing Lateness: Greedy Algorithm

Greedy Activity Selection Algorithm

Sort jobs by increasing deadline so that
d <d, < ..<d.
t=0
forj=1ton
Assign job jto interval [t, t + p il
S < tf j «_t+pj
t < t+p
output intervals [s EREN

max lateness = 2 -——w

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimizing Lateness: No Idle Time

Fact 1: there exists an optimal schedule with no idle time.

o 1 2 3 4 5 6 7 8 9 10 11

o 1 2 3 4 5 6 7 8 9 10 11

Fact 2: the greedy schedule has no idle time.

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

. 1<
. j scheduled beforei inversion
KTy
d5:8 d2:4

Fact 3: greedy schedule < no inversions.

Fact 4. if aschedule (with no idle time) has an inversion, it has one
whose with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

. 1<
. j scheduled beforei inversion
KTy
d5:8 d2:4
d,=4 d.=8

Fact 3: greedy schedule < no inversions.

Fact 4. if aschedule (with no idle time) has an inversion, it has one
whose with a pair of inverted jobs scheduled consecutively.

Fact 5: swapping two adjacent, inverted jobs:
Reduces the number of inversions by one.
Does not increase the maximum lateness.

Theorem: greedy schedule is optimal.

Minimizing Lateness: Proof of Fact 5

An inversion in schedule S is a pair of jobs i and j such that:

. 1<
. j scheduled beforei f
i
fr

]

Swapping two adjacent, inverted jobs does not increase max lateness.
. O =(forallk #1,]

. 0<)

. Ifjobjis late: f'j — fj'—dj (definition)
= f; —d, (j finishesat time f;)
< f -d (i<])
< ¢ (definition)

	Camp Προετοιμασίας�Αλγόριθμοι
	Σύνοψη
	Divide and conquer
	Greedy algorithms
	Dynamic programming
	Longest Common Subsequence
	Longest Common Subsequence
	dyn-epotik.pdf
	Dynamic Programming
	Προβλήματα Βελτιστοποίησης
	Παραδείγματα Προβλημάτων Βελτιστοποίησης
	Πότε μπορούμε να χρησιμοποιήσουμε την τεχνική του Δυναμικού Προγραμματισμού;
	Βελτιστοποίηση = Αποφάσεις
	Matrix-Chain Multiplication
	Κόστος του πολλαπλασιασμού δύο πινάκων
	Κόστος του πολλαπλασιασμού τριών πινάκων
	Παράδειγμα
	Περισσότεροι πίνακες, περισσότεροι τρόποι να βάλεις παρενθέσεις
	Εύρεση βέλτιστη θέση παρενθέσεων
	Έχει το Matrix-Chain MultiplicationOptimal Substructure;
	Αναδρομική Σχέση
	The Algorithm
	Computing a Solution, Not Only Its Cost
	Computing a Solution, Not Only Its Cost
	Complexity of the Algorithm

