
Longest common subsequence

INPUT: two strings

OUTPUT: longest common subsequence

ACTGAACTCTGTGCACT

TGACTCAGCACAAAAAC

Longest common subsequence

INPUT: two strings

OUTPUT: longest common subsequence

ACTGAACTCTGTGCACT

TGACTCAGCACAAAAAC

Longest common subsequence

If the sequences end with the same
symbol s, then LCS ends with s.

s

s

Longest common subsequence

Sequences x1,…,xn, and y1,…,ym

LCS(i,j) = length of a longest common
subsequence of x1,…,xi and y1,…,yj

Longest common subsequence

Sequences x1,…,xn, and y1,…,ym

LCS(i,j) = length of a longest common
subsequence of x1,…,xi and y1,…,yj

if xi = yj then

LCS(i,j) =

Longest common subsequence

Sequences x1,…,xn, and y1,…,ym

LCS(i,j) = length of a longest common
subsequence of x1,…,xi and y1,…,yj

if xi = yj then

LCS(i,j) = 1 + LCS(i-1,j-1)

Longest common subsequence

Sequences x1,…,xn, and y1,…,ym

LCS(i,j) = length of a longest common
subsequence of x1,…,xi and y1,…,yj

if xi ≠ yj then

LCS(i,j) = max (LCS(i-1,j),LCS(i,j-1))

xi and yj cannot both be in LCS

Longest common subsequence

Sequences x1,…,xn, and y1,…,ym

LCS(i,j) = length of a longest common
subsequence of x1,…,xi and y1,…,yj

if xi ≠ yj then

LCS(i,j) = max (LCS(i-1,j),LCS(i,j-1))

if xi = yj then
LCS(i,j) = 1 + LCS(i-1,j-1)

Longest common subsequence

Sequences x1,…,xn, and y1,…,ym

LCS(i,j) = length of a longest common
subsequence of x1,…,xi and y1,…,yj

if xi ≠ yj then

LCS(i,j) = max (LCS(i-1,j),LCS(i,j-1))

if xi = yj then
LCS(i,j) = 1 + LCS(i-1,j-1)

Running time ?

Longest common subsequence

Sequences x1,…,xn, and y1,…,ym

LCS(i,j) = length of a longest common
subsequence of x1,…,xi and y1,…,yj

if xi ≠ yj then

LCS(i,j) = max (LCS(i-1,j),LCS(i,j-1))

if xi = yj then
LCS(i,j) = 1 + LCS(i-1,j-1)

Running time = O(mn)

Optimal matrix multiplication

a

b

b

c

=

A = a x b matrix
B = b x c matrix

How many operations to compute AB ?

Optimal matrix multiplication

a

b

b

c

=

Optimal matrix multiplication

a

b

b

c

=

each entry of A * B takes Θ(b) time

need to compute ac entries ⇒Θ(abc) time
total

Optimal matrix multiplication

N x N
matrix

N x N
matrix

A B

Compute AB, time = ?

Optimal matrix multiplication

N x N
matrix

N x N
matrix

A B

Compute AB, time = Θ(N3)

Optimal matrix multiplication

N x N
matrix

N x N
matrix

A B

Compute AB, time = Θ(N3)

Compute ABC, time = ?

C

N
 x 1

 m
a

trix

Optimal matrix multiplication

N x N
matrix

N x N
matrix

A B

Compute D=BC, time = ?
Compute AD, time = ?
Compute ABC, time = ?

C

N
 x 1

 m
a

trix

Optimal matrix multiplication

N x N
matrix

N x N
matrix

A B

Compute D=BC, time = Θ(N2)
Compute AD, time = ?
Compute ABC, time = ?

C

N
 x 1

 m
a

trix

Optimal matrix multiplication

N x N
matrix

A

Compute D=BC, time = Θ(N2)
Compute AD, time = ?
Compute ABC, time = ?

D

N
 x 1

 m
a

trix

Optimal matrix multiplication

N x N
matrix

A

Compute D=BC, time = Θ(N2)
Compute AD, time = Θ(N2)
Compute ABC, time = Θ(N2)

D

N
 x 1

 m
a

trix

Optimal matrix multiplication

N x N
matrix

N x N
matrix

A B

(AB)C = ABC = A(BC)
C

N
 x 1

 m
a

trix

The order of evaluation
does not change the result
can change the amount of work needed

Optimal matrix multiplication

a1,a2,a3,….,an

n-1 matrices of sizes
a1 x a2 B1
a2 x a3 B2
a3 x a4 B3

….
an-1 x an Bn-1

What order should we multiply them in?

Optimal matrix multiplication

B1 B2 B3 B4 … Bn-1

B1 (B2 B3 B4 … Bn-1)
(B1 B2) (B3 B4 … Bn-1)
(B1 B2 B3) (B4 … Bn-1)
…
(B1 B2 B3 B4 …) Bn-1

Optimal matrix multiplication

B1 B2 B3 B4 … Bn-1

K[i,j] = the minimal number of operations
needed to multiply Bi … Bj

Bi (Bi+1 Bi+2 … Bj)
(Bi Bi+1) (Bi+2 … Bj)
(Bi Bi+1 Bi+2) (… Bj)

…
(B1 B2 B3 …) Bj

K[i,i] + K[i+1,j] + aiai+1aj+1

K[i,i+1] + K[i+2,j] + aiai+2aj+1

K[i,i+2] + K[i+3,j] + aiai+3aj+1

K[i,j-1] + K[j,j] + aiajaj+1

Optimal matrix multiplication

B1 B2 B3 B4 … Bn-1

K[i,j] = the minimal number of operations
needed to multiply Bi … Bj

K[i,j] = min K[i,w] + K[w+1,j] + ai aw+1 aj
i≤w< j

K[i,i]=0

Travelling Salesman Problem

INPUT:
N cities, NxN symmetric matrix D,
D(i,j) = distance between city i and j

OUTPUT:
the shortest tour visiting all the cities

Travelling Salesman Problem

Algorithm 1 – try all possibilities

for each permutation π of {1,...,n}
visit the cities in the order π,
compute distance travelled,

pick the best solution

running time = ?

Travelling Salesman Problem

Algorithm 1 – try all possibilities

for each permutation π of {1,...,n}
visit the cities in the order π,
compute distance travelled,

pick the best solution

running time ≈ n!

is (n+1)! = O(n!) ?

Travelling Salesman Problem
for each subset S of the cities with
|S| ≥ 2 and each u,v∈ S

K[S,u,v] the length of the shortest path that
* starts at u
* ends at v
* visits all cities in S

How large is K ?

Travelling Salesman Problem
for each subset S of the cities with
|S| ≥ 2 and each u,v∈ S

K[S,u,v] the length of the shortest path that
* starts at u
* ends at v
* visits all cities in S

How large is K ?

≈ 2n n2

Travelling Salesman Problem

K[S,u,v]

some vertex w ∈ S – {u,v}
must be visited first

d(u,w) = we get to w
K[S-u,w,v] = we need to get from w to v

and visit all vertices in S-u

Travelling Salesman Problem
K[S,u,v] the length of the shortest path that

* starts at u
* ends at v
* visits all cities in S

if S={u,v} then K[S,u,v]=d(u,v)

if |S|>2 then

K[S,u,v] = min K[S-u,w,v] + d(u,w)
w∈S-{u,v}

Travelling Salesman Problem

if S={u,v} then K[S,u,v]=d(u,v)

if |S|>2 then

K[S,u,v] = min K[S-u,w,v] + d(u,w)
w∈S-{u,v}

Running time = ?

K ≈ 2n n2

Travelling Salesman Problem

if S={u,v} then K[S,u,v]=d(u,v)

if |S|>2 then

K[S,u,v] = min K[S-u,w,v] + d(u,w)
w∈S-{u,v}

Running time = O(n3 2n)

K ≈ 2n n2

Travelling Salesman Problem
dynamic programming = O(n3 2n)
brute force = O(n!)

Longest increasing subsequence

INPUT: numbers a1, a2, ... , an

OUTPUT: longest increasing subsequence

1,9,2,4,7,5,6

1,9,2,4,7,5,6

Longest increasing subsequence

INPUT: numbers a1, a2, ... , an

OUTPUT: longest increasing subsequence

reduce to a problem that we saw today

Longest increasing subsequence

INPUT: numbers a1, a2, ... , an

OUTPUT: longest increasing subsequence

Longest increasing subsequence

INPUT: numbers a1, a2, ... , an

OUTPUT: longest increasing subsequence

K[i,j] = the minimum last element of an
increasing seqence in a1, ... ,ai

of length j (if no sequence ⇒∞)

K[0..n,0..n]

Longest increasing subsequence

K[i,j] = the minimum last element of an
increasing seqence in a1, ... ,ai

of length j (if no sequence ⇒∞)

K[0..n,0..n]

true/false: K[i,j] ≤ K[i,j+1] ?

Longest increasing subsequence

K[i,j] = the minimum last element of an
increasing seqence in a1, ... ,ai

of length j (if no sequence ⇒∞)

K[0..n,0..n]

K[0,j] = ? for j ≥ 1

K[0,0] = ?

Longest increasing subsequence

K[i,j] = the minimum last element of an
increasing seqence in a1, ... ,ai

of length j (if no sequence ⇒∞)

K[0..n,0..n]

K[0,j] = ∞ for j ≥ 1

K[0,0] = - ∞

Longest increasing subsequence

K[i,j] = the minimum last element of an
increasing seqence in a1, ... ,ai

of length j (if no sequence ⇒∞)

K[0..n,0..n]

K[i,j] = ?

Longest increasing subsequence

K[i,j] = the minimum last element of an
increasing seqence in a1, ... ,ai

of length j (if no sequence ⇒∞)

K[0..n,0..n]

K[i,j] = ai if ai < K[i-1,j]
and

ai > K[i-1,j-1]

K[i,j] = K[i-1,j] otherwise

Longest increasing subsequence

K[i,j] = the minimum last element of an
increasing seqence in a1, ... ,ai

of length j (if no sequence ⇒∞)

K[0..n,0..n]

K[i,0] = -∞
K[i,1] =
K[i,2] =

...
K[i,j] =
K[i,j+1] =∞

ai < K[i-1,j]
and

ai > K[i-1,j-1]

Longest increasing subsequence

K[0,0] = -∞
K[0,1] = ∞
K[0,2] = ∞
K[0,3] = ∞
K[0,4] = ∞
K[0,5] = ∞
K[0,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[1,0] = -∞
K[1,1] = 1
K[1,2] = ∞
K[1,3] = ∞
K[1,4] = ∞
K[1,5] = ∞
K[1,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[1,0] = -∞
K[1,1] = 1
K[1,2] = ∞
K[1,3] = ∞
K[1,4] = ∞
K[1,5] = ∞
K[1,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[2,0] = -∞
K[2,1] = 1
K[2,2] = 9
K[2,3] = ∞
K[2,4] = ∞
K[2,5] = ∞
K[2,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[2,0] = -∞
K[2,1] = 1
K[2,2] = 9
K[2,3] = ∞
K[2,4] = ∞
K[2,5] = ∞
K[2,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[3,0] = -∞
K[3,1] = 1
K[3,2] = 2
K[3,3] = ∞
K[3,4] = ∞
K[3,5] = ∞
K[3,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[3,0] = -∞
K[3,1] = 1
K[3,2] = 2
K[3,3] = ∞
K[3,4] = ∞
K[3,5] = ∞
K[3,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[4,0] = -∞
K[4,1] = 1
K[4,2] = 2
K[4,3] = 4
K[4,4] = ∞
K[4,5] = ∞
K[4,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[4,0] = -∞
K[4,1] = 1
K[4,2] = 2
K[4,3] = 4
K[4,4] = ∞
K[4,5] = ∞
K[4,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[5,0] = -∞
K[5,1] = 1
K[5,2] = 2
K[5,3] = 4
K[5,4] = 7
K[5,5] = ∞
K[5,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[5,0] = -∞
K[5,1] = 1
K[5,2] = 2
K[5,3] = 4
K[5,4] = 7
K[5,5] = ∞
K[5,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[6,0] = -∞
K[6,1] = 1
K[6,2] = 2
K[6,3] = 4
K[6,4] = 5
K[6,5] = ∞
K[6,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[6,0] = -∞
K[6,1] = 1
K[6,2] = 2
K[6,3] = 4
K[6,4] = 5
K[6,5] = ∞
K[6,6] = ∞

1,9,2,4,7,5,6

Longest increasing subsequence

K[7,0] = -∞
K[7,1] = 1
K[7,2] = 2
K[7,3] = 4
K[7,4] = 5
K[7,5] = 6
K[7,6] = ∞

1,9,2,4,7,5,6

answer = 5

