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Selecting Breakpoints

Minimizing breakpoints.

■ Truck driver going from Princeton to Palo Alto along 
predetermined route.

■ Refueling stations at certain points along the way.

■ Truck fuel capacity = C.

Greedy algorithm.

■ Go as far as you can before refueling.
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Sort breakpoints by increasing value:
0 = b0 < b1 < b2 < ... < bn.

S ← {0}
x = 0
while (x ≠ bn)

let p be largest integer such that bp ≤ x + C
if (bp = x)

return "no solution"
x ← bp
S ← S ∪ {p}

return S

Greedy Breakpoint Selection Algorithm

Selecting Breakpoints:  Greedy Algorithm

S = breakpoints selected.
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Selecting Breakpoints

Theorem:  greedy algorithm is optimal.

Proof (by contradiction):

■ Let 0 = g0 < g1 <  . . . < gp = L denote set of breakpoints chosen by 
greedy and assume it is not optimal.

■ Let 0 = f0 < f1 <  . . . < fq = L denote set of breakpoints in optimal 
solution with  f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: q < p.
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Selecting Breakpoints

Theorem:  greedy algorithm is optimal.

Proof (by contradiction):

■ Let 0 = g0 < g1 <  . . . < gp = L denote set of breakpoints chosen by 
greedy and assume it is not optimal.

■ Let 0 = f0 < f1 <  . . . < fq = L denote set of breakpoints in optimal 
solution with  f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: q < p.
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Selecting Breakpoints

Theorem:  greedy algorithm is optimal.

Proof (by contradiction):

■ Let 0 = g0 < g1 <  . . . < gp = L denote set of breakpoints chosen by 
greedy and assume it is not optimal.

■ Let 0 = f0 < f1 <  . . . < fq = L denote set of breakpoints in optimal 
solution with  f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: q < p.

■ Thus,  f0 = g0, f1= g1 , . . . , fq = gq 
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Minimizing Lateness

Minimizing lateness problem.

■ Single resource can process one job at a time.

■ n jobs to be processed.
– job j requires pj units of processing time.
– job j has due date dj.

■ If we assign job j to start at time sj, it finishes at time fj = sj + pj. 

■ Lateness: lj = max { 0,  fj - dj }.

■ Goal:  schedule all jobs to minimize maximum lateness L = max lj.
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Minimizing Lateness:  Greedy Algorithm

Sort jobs by increasing deadline so that
d1 ≤ d2 ≤ … ≤ dn.

t = 0
for j = 1 to n

Assign job j to interval [t, t + p j]
sj ← t, f j ← t + p j

t ← t + p j
output intervals [s j, f j]

Greedy Activity Selection Algorithm

max lateness = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d5 = 11d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9
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Minimizing Lateness: No Idle Time

Fact 1:  there exists an optimal schedule with no idle time.

Fact 2:  the greedy schedule has no idle time.
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Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

■ i < j

■ j scheduled before i

Fact 3:  greedy schedule  ⇔ no inversions. 

Fact 4:  if a schedule (with no idle time) has an inversion, it has one 
whose with a pair of inverted jobs scheduled consecutively.

d2 = 4d5 = 8

inversion
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Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

■ i < j

■ j scheduled before i

Fact 3:  greedy schedule  ⇔ no inversions. 

Fact 4:  if a schedule (with no idle time) has an inversion, it has one 
whose with a pair of inverted jobs scheduled consecutively.

Fact 5:  swapping two adjacent, inverted jobs:

■ Reduces the number of inversions by one.

■ Does not increase the maximum lateness.

Theorem:  greedy schedule is optimal.

d2 = 4 d5 = 8

d2 = 4d5 = 8

inversion
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Minimizing Lateness: Proof of Fact 5

An inversion in schedule S is a pair of jobs i and j such that:

■ i < j

■ j scheduled before i

Swapping two adjacent, inverted jobs does not increase max lateness.

■ l’k = lk for all k ≠ i, j

■ l’i ≤ li
■ If job j is late:
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