Longest common subsequence

INPUT: two strings

OUTPUT: longest common subsequence

ACTGAACTCTGTGCACT

TGACTCAGCACAAAAAC

Longest common subsequence

INPUT: two strings

OUTPUT: longest common subsequence

AC A T¢T1G6 T

A AVAVAVAVAY

Longest common subsequence

If the sequences end with the same
symbol s, then LCS ends with s.

Longest common subsequence

Sequences X,,...,X., and y,,...,y,.

LCS(i,)) = length of a longest common

subsequence of x,,...,x;and y,,...,y;

Longest common subsequence

Sequences X,,...,X., and y,,...,y,.

LCS(i,)) = length of a longest common

subsequence of x,,...,x;and y,,...,y;

if x, =y, then
LCS(i,)) =

Longest common subsequence

Sequences X,,...,X., and y,,...,y,.

LCS(i,)) = length of a longest common

subsequence of x,,...,x;and y,,...,y;

if x, =y, then
LCS(i,j) =1+ LCS(i-1,j-1)

Longest common subsequence

Sequences X,,...,X., and y,,...,y,.

LCS(i,)) = length of a longest common

subsequence of x,,...,x;and y,,...,y;

if x; = y; then

LCS(i,j) = max (LCS(i-1,j),LCS(i,j-1))

X; and y. cannot both be in LCS

Longest common subsequence

Sequences X,,...,X., and y,,...,y,.

LCS(i,)) = length of a longest common

subsequence of x,,...,x;and y,,...,y;

if x;, =y, then
LCS(i,j) =1+ LCS(i-1,j-1)

if x; =y, then
LCS(i,j) = max (LCS(i-1,j),LCS(i,j-1))

Longest common subsequence

Running time ?
Sequences Xx,,...,X, and y,,....y

LCS(i,j) = length of a longest common

subsequence of x,,...,x; and Yis---5Y]

if x, =y, then
LCS(i,j) =1+ LCS(i-1,j-1)

if x; =y, then
LCS(i,j) = max (LCS(i-1,j),LCS(i,j-1))

Longest common subsequence

Running time = O(mn)
Sequences Xx,,...,X, and y,,....y

LCS(i,j) = length of a longest common

subsequence of x,,...,x; and Yis---5Y]

if x, =y, then
LCS(i,j) =1+ LCS(i-1,j-1)

if x; =y, then
LCS(i,j) = max (LCS(i-1,j),LCS(i,j-1))

Optimal matrix multiplication

C
b

A = a x b matrix
B = b x ¢ matrix

How many operations to compute AB ?

Optimal matrix multiplication

C
b

I n
o

a

Optimal matrix multiplication

C
b

- _
b —

a

each entry of A * B takes ©(b) time

need to compute ac entries = ®(abc) time
total

Optimal matrix multiplication

NxN NxN
matrix matrix
A B

Compute AB, time =?

Optimal matrix multiplication

NxN NxN
matrix matrix
A B

Compute AB, time = ©(N3)

Optimal matrix multiplication

Z

X

N xN N xN =
matrix matrix g
>

A B C

Compute AB, time = ©(N3)

Compute ABC, time =?

Optimal matrix multiplication

Z

X

N xN N xN =
matrix matrix g
>

A B C

Compute D=BC, time =?
Compute AD, time =?
Compute ABC, time ="?

Optimal matrix multiplication

Z

X

N xN N xN =
matrix matrix g
>

A B C

Compute D=BC, time = ©O(N?)
Compute AD, time =?
Compute ABC, time =?

Optimal matrix multiplication

2

X

NxN =
matrix g
5.

X

A D

Compute D=BC, time = ©O(N?)
Compute AD, time =?
Compute ABC, time =?

Optimal matrix multiplication

2

X

NxN =
matrix g
5.

X

A D

Compute D=BC, time = ©O(N?)
Compute AD, time = ©(N?)
Compute ABC, time = ©(N?)

Optimal matrix multiplication

Z
X
N xN N xN =
matrix matrix g
3
X

B C

(Aé)c = ABC = A(BC)

The order of evaluation
does not change the resuit
can change the amount of work needed

Optimal matrix multiplication

a,,a,,as,....,a,

n-1 matrices of sizes

a, x a, B,
a, X ag 82
a; Xa, B,
an-1 X an Bn-1

What order should we multiply them in?

Optimal matrix multiplication
B,B,B,B,...B

n-1
B,(B,B;B,...B)
(B,B,)(B;B,...B,,)
(B,B,B3) (B,...B,,)

(81 BZ BS B4) Bn-1

Optimal matrix multiplication
B,B,B,B,...B_,

Kl[i,j] = the minimal number of operations

needed to multiply B, ... B,

J
(B| B|+1) (B'+2 coe B) K[l’|+1] + K[|+2’J] + aiai+2aj+1
.B)

B. (B, B, ... B) K[i,i] + K[i+1,j] + aa;,4a,
j
(B;Bi.1 Bi.o) (... B K[i,i+2] + K[i+3,] + a;a;,3,

(B,B,B; ...)B, K[i,j-1] + K[j.jl + aaa;.,

Optimal matrix multiplication
B,B,B,B,...B

n-1

Kl[i,j] = the minimal number of operations

needed to multiply B, ... B,

K[i,i]=0

Kli,j]= min K[i,w] + K[w+1,j] + a, a., a,
ISWK< §

Travelling Salesman Problem

INPUT:
N cities, NxN symmetric matrix D,
D(i,j) = distance between city i and |

OUTPUT:
the shortest tour visiting all the cities
C ®
®
C

Travelling Salesman Problem
Algorithm 1 — try all possibilities
for each permutation = of {1,...,n}
visit the cities in the order T,

compute distance travelled,

pick the best solution

running time = ?

Travelling Salesman Problem
Algorithm 1 — try all possibilities
for each permutation = of {1,...,n}
visit the cities in the order T,
compute distance travelled,

pick the best solution

running time = n!

is (n+1)! = O(n!) ?

Travelling Salesman Problem

for each subset S of the cities with
IS| > 2 and each u,ve S

K[S,u,v] the length of the shortest path that
* starts at u
*ends at v
* visits all cities in S

How large is K ?

Travelling Salesman Problem

for each subset S of the cities with
IS| > 2 and each u,ve S

K[S,u,v] the length of the shortest path that
* starts at u
*ends at v
* visits all cities in S

How large is K ?

~ 2" n?

Travelling Salesman Problem

K[S,u,v]

some vertexw € S - {u,v}
must be visited first

d(u,w) =wegettow
K[S-u,w,v] =we needtogetfromwtov
and visit all vertices in S-u

Travelling Salesman Problem

K[S,u,v] the length of the shortest path that
* starts at u
*ends at v
* visits all cities in S

if S={u,v} then K[S,u,v]=d(u,v)

if |S|>2 then

KS,u,vl]= min K[S-u,w,v] + d(u,w)

weS-{u,v}

Travelling Salesman Problem
if S={u,v} then K[S,u,v]=d(u,v)

if |S|>2 then

K[S,u,vl]= min K[S-u,w,v] + d(u,w)

ISSE{TRY)

Running time =?

Kx2"n?

Travelling Salesman Problem
if S={u,v} then K[S,u,v]=d(u,v)

if |S|>2 then

K[S,u,vl]= min K[S-u,w,v] + d(u,w)

ISSE{TRY)

Running time = O(n3 2")

Kx2"n?

Travelling Salesman Problem

dynamic programming = O(n3 2")
brute force = O(n!)

Longest increasing subsequence

INPUT: numbers a,, a,, ..., a

n

OUTPUT: longest increasing subsequence

1,9,2,4,7,5,6

’9’ b ’79 b

Longest increasing subsequence

INPUT: numbers a,, a,, ..., a

n

OUTPUT: longest increasing subsequence

reduce to a problem that we saw today

Longest increasing subsequence

INPUT: numbers a,, a,, ..., a

n

OUTPUT: longest increasing subsequence

Longest increasing subsequence

INPUT: numbers a,, a,, ..., a

n

OUTPUT: longest increasing subsequence

K[0..n,0..n]

Kl[i,j] = the minimum last element of an
iIncreasing segenceina,, ... ,a

of length j (if no sequence = x)

Longest increasing subsequence
K[0..n,0..n]

Kl[i,j] = the minimum last element of an
iIncreasing segencein a,, ... ,a
of length j (if no sequence = «x)

true/false: Kli,j] < K[i,j+1] ?

Longest increasing subsequence
K[0..n,0..n]

Kl[i,j] = the minimum last element of an
iIncreasing segencein a,, ... ,a
of length j (if no sequence = «x)

K[0,j] = ? forj>1

K[0,0] =7

Longest increasing subsequence
K[0..n,0..n]

Kl[i,j] = the minimum last element of an
iIncreasing segencein a,, ... ,a
of length j (if no sequence = «x)

K[O,j] = for j>1

K[0,0] =-x

Longest increasing subsequence
K[0..n,0..n]

Kl[i,j] = the minimum last element of an
iIncreasing segencein a,, ... ,a
of length j (if no sequence = «x)

KL.]=7

Longest increasing subsequence
K[0..n,0..n]

Kl[i,j] = the minimum last element of an
iIncreasing segencein a,, ... ,a
of length j (if no sequence = «x)

Kl.jl=a, if a; < K[i-1,j]
and
a. > K[i-1,j-1]

K[i,j] = K[i-1,j] otherwise

Longest increasing subsequence
K[0..n,0..n]

Kl[i,j] = the minimum last element of an
iIncreasing segencein a,, ... ,a
of length j (if no sequence = «x)

K[i,0] = -

K[|,1] — ;4
- oKL
(i o> Kb

K[i,j+1] =0

Longest increasing subsequence

K[0,0] = -
K[0,1] =«
K[0,2] =«
K[0,3] =«
K[0,4] = «
K[0,5] = w
K[0,6] = «

1,9,2,4,7,5,6

Longest increasing subsequence

K[1,0] = -
K[1,1] =1
K[1,2] =«
K[1,3] =
K[1,4] =«
K[1,5] = w
K[1,6] = «

1,9,2,4,7,5,6

Longest increasing subsequence

K[1,0] = -
K[1,1] =1
K[1,2] =«
K[1,3] =
K[1,4] =«
K[1,5] = w
K[1,6] = «

1,9,2,4,7,5,6

Longest increasing subsequence

K[2,0] = -
K[2,1] =1

K[2,2] =9

K[2,3] =«
K[2,4] = «©
K[2,5] = «w
K[2,6] = «©

1,9,2,4,7,5,6

Longest increasing subsequence

K[2,0] = -
K[2,1] =1

K[2,2] =9

K[2,3] =«
K[2,4] = «©
K[2,5] = «w
K[2,6] = «©

1,9,2,4,7,5,6

Longest increasing subsequence

K[3,0] = -
K[3,1] =1

K[3,2] = 2

K[3,3] = x
K[3,4] = «
K[3,5] = w
K[3,6] = «

1,9,2,4,7,5,6

Longest increasing subsequence

K[3,0] = -
K[3,1] =1

K[3,2] = 2

K[3,3] = x
K[3,4] = «
K[3,5] = w
K[3,6] = «

1,9,2,4,7,5,6

Longest increasing subsequence

K[4,0] = -
K(4,1] = 1
K[4,2] =2
K[4,3] =4
K[4,4] = ©
K[4,5] = w
K[4,6] = «

1,9,2,4,7,5,6

Longest increasing subsequence

K[4,0] = -
K(4,1] = 1
K[4,2] =2
K[4,3] =4
K[4,4] = ©
K[4,5] = w
K[4,6] = «

1,9,2,4,7,5,6

Longest increasing subsequence

K[5,0] = -
K[5,1] =1
K[5,2] = 2
K[5,3] =4
K[5,4] =7
K[5,5] = w
K[5,6] =«

1,9,2,4,7,5,6

Longest increasing subsequence

K[5,0] = -
K[5,1] =1
K[5,2] = 2
K[5,3] =4
K[5,4] =7
K[5,5] = w
K[5,6] =«

1,9,2,4,7,5,6

Longest increasing subsequence

K[6,0] = -
K[6,1] =1
K[6,2] = 2
K[6,3] =4
K[6,4] =5
K[6,5] = w
K[6,6] = «

1,9,2,4,7,5,6

Longest increasing subsequence

K[6,0] = -
K[6,1] =1
K[6,2] = 2
K[6,3] =4
K[6,4] =5
K[6,5] = w
K[6,6] = «

1,9,2,4,7,5,6

Longest increasing subsequence

K[7,0] = -

K[7,1] =1

K[7,2] =2

K[7,3] =4

K[7,4] =5

K[7,5] =6 answer =5
K[7,6] =«

1,9,2,4,7,5,6

