
3

Selecting Breakpoints

Minimizing breakpoints.

■ Truck driver going from Princeton to Palo Alto along
predetermined route.

■ Refueling stations at certain points along the way.

■ Truck fuel capacity = C.

Greedy algorithm.

■ Go as far as you can before refueling.

Princeton Palo Alto

1

C

C

2

C

3

C

4

C

5

C

6

C

7

4

Sort breakpoints by increasing value:
0 = b0 < b1 < b2 < ... < bn.

S ← {0}
x = 0
while (x ≠ bn)

let p be largest integer such that bp ≤ x + C
if (bp = x)

return "no solution"
x ← bp
S ← S ∪ {p}

return S

Greedy Breakpoint Selection Algorithm

Selecting Breakpoints: Greedy Algorithm

S = breakpoints selected.

5

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

■ Let 0 = g0 < g1 < . . . < gp = L denote set of breakpoints chosen by
greedy and assume it is not optimal.

■ Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints in optimal
solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: q < p.

1 2 3 4 5 6 7

1 2 3 4 5 6 7 98

r = 4

Greedy:

OPT:

g0 g1 g2

f0 f1 f2

gp

fq

gr

fr

6

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

■ Let 0 = g0 < g1 < . . . < gp = L denote set of breakpoints chosen by
greedy and assume it is not optimal.

■ Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints in optimal
solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: q < p.

1 2 3 4 5 6 7

1 2 3 4 5 6 7 98Greedy:

OPT: 5

5

5

r = 5

g0 g1 g2

f0 f1 f2

gp

fq

r = 4

7

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

■ Let 0 = g0 < g1 < . . . < gp = L denote set of breakpoints chosen by
greedy and assume it is not optimal.

■ Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints in optimal
solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: q < p.

■ Thus, f0 = g0, f1= g1 , . . . , fq = gq

1 2 3 4

1 2 3 4 6 7Greedy:

OPT:

5

5

r = q = 5

g0 g1 g2

f0 f1 f2

gq

fq

gp

19

Minimizing Lateness

Minimizing lateness problem.

■ Single resource can process one job at a time.

■ n jobs to be processed.
– job j requires pj units of processing time.
– job j has due date dj.

■ If we assign job j to start at time sj, it finishes at time fj = sj + pj.

■ Lateness: lj = max { 0, fj - dj }.

■ Goal: schedule all jobs to minimize maximum lateness L = max lj.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d = 11

d = 8

d = 15

d = 6 d = 9

d = 9

d = 11d = 8 d = 2 d = 6 d = 9d = 9

Lateness = 3

20

Minimizing Lateness: Greedy Algorithm

Sort jobs by increasing deadline so that
d1 ≤ d2 ≤ … ≤ dn.

t = 0
for j = 1 to n

Assign job j to interval [t, t + p j]
sj ← t, f j ← t + p j

t ← t + p j
output intervals [s j, f j]

Greedy Activity Selection Algorithm

max lateness = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d5 = 11d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

21

Minimizing Lateness: No Idle Time

Fact 1: there exists an optimal schedule with no idle time.

Fact 2: the greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

22

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

■ i < j

■ j scheduled before i

Fact 3: greedy schedule ⇔ no inversions.

Fact 4: if a schedule (with no idle time) has an inversion, it has one
whose with a pair of inverted jobs scheduled consecutively.

d2 = 4d5 = 8

inversion

23

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:

■ i < j

■ j scheduled before i

Fact 3: greedy schedule ⇔ no inversions.

Fact 4: if a schedule (with no idle time) has an inversion, it has one
whose with a pair of inverted jobs scheduled consecutively.

Fact 5: swapping two adjacent, inverted jobs:

■ Reduces the number of inversions by one.

■ Does not increase the maximum lateness.

Theorem: greedy schedule is optimal.

d2 = 4 d5 = 8

d2 = 4d5 = 8

inversion

24

Minimizing Lateness: Proof of Fact 5

An inversion in schedule S is a pair of jobs i and j such that:

■ i < j

■ j scheduled before i

Swapping two adjacent, inverted jobs does not increase max lateness.

■ l’k = lk for all k ≠ i, j

■ l’i ≤ li
■ If job j is late:

ij

i j

fi

f’j

n)(definitio

)(

) timeat finishes (

n)(definitio

i

ii

iji

jjj

jidf

fjdf

df

l

l

≤
<−≤

−=
−′=′

	Camp Προετοιμασίας�Αλγόριθμοι
	Σύνοψη
	Divide and conquer
	Greedy algorithms
	Dynamic programming
	Longest Common Subsequence
	Longest Common Subsequence
	dyn-epotik.pdf
	Dynamic Programming
	Προβλήματα Βελτιστοποίησης
	Παραδείγματα Προβλημάτων Βελτιστοποίησης
	Πότε μπορούμε να χρησιμοποιήσουμε την τεχνική του Δυναμικού Προγραμματισμού;
	Βελτιστοποίηση = Αποφάσεις
	Matrix-Chain Multiplication
	Κόστος του πολλαπλασιασμού δύο πινάκων
	Κόστος του πολλαπλασιασμού τριών πινάκων
	Παράδειγμα
	Περισσότεροι πίνακες, περισσότεροι τρόποι να βάλεις παρενθέσεις
	Εύρεση βέλτιστη θέση παρενθέσεων
	Έχει το Matrix-Chain MultiplicationOptimal Substructure;
	Αναδρομική Σχέση
	The Algorithm
	Computing a Solution, Not Only Its Cost
	Computing a Solution, Not Only Its Cost
	Complexity of the Algorithm

