LiquidHaskell: Liquid Types for Haskell

Niki Vazou

nvazou@cs.ucsd.edu
University of California, San Diego

Abstract

Even well-typed programs can go wrong, by returning a wrong answer or
throwing a run-time error. A popular response is to allow programmers use refine-
ment type systems to express semantic specifications about programs. We study
verification in such systems. On the one hand, expressive refinement type systems
require run-time checks or explicit proofs to verify specifications. On the other,
less expressive type systems allow static and automatic proofs of the specifications.
Next, we present abstract refinement types, a means to enhance the expressiveness
of a refinement type system without increasing its complexity. Then, we present
LIQUIDHASKELL that combines liquidTypes with abstraction over refinements to
enhance expressiveness of LiquidTypes. LIQUIDHASKELL is a quite expressive
verification tool for Haskell programs that can be used to check termination, total-
ity and general functional correctness. Finally, we evaluate LIQUIDHASKELL in
real world Haskell libraries.

1 Introduction

Functional programming languages, like ML and Haskell, come with strong static type
systems, which detect a lot of errors at compile-time and enhance code documentation.

The usefulness of these type systems stems from their ability to predict, at compile-
time, invariants about the run-time values computed by the program. Unfortunately,
traditional type systems only capture relatively coarse invariants. For example, the
system can express the fact that a variable i is of type Int, meaning that it is always
an integer, but not that it is always an integer with a certain property, say different
than zero. Thus, the type system is unable to statically ensure the safety of critical
operations, such as division by i. Several authors have proposed the use of refinement
types [?, 2, 2, ?] as a mechanism for enhancing the expressiveness of type systems.

Refinement types refine a vanilla type with a predicate. For example, one can give
i the following type:

i :: {v:Int | v != 0}

that describes a value v of type Int, while the refinement constraints this value v to
be different than 0.
One can use this refinement type to define a safe division operator:

safeDiv :: Int —=> {v:Int | v != 0} —-> Int

This type captures that the division operator takes two Int arguments and returns an
Int. Moreover, it restricts the second argument to be different that zero, to eliminate
division by zero operations.

At the call site of safeDiv the type system should check that the real arguments
do not violate its specification. For instance, safeDiv 8 9 is safe, since 9 is always

different that zero, but safeDiv 8 O should raise a type error. Apart from concrete
values, safeDiv can be applied to arbitrary program expressions: safeDiv n mis
safe only if m is an integer different than zero.

Refinement Function Types. Refinement function types [?, ?] allow the specification
of the result to depend on the argument. A parameter is used to bind the argument and
can appear in the refinement of the result. As an example, we define a pred function,
which takes as argument a positive integer n and returns its predecessor. Refinement
function types allow us to give pred a type that exactly captures this behaviour:

pred :: n : {v:Int | v > 0} -> {v:Int | v = n-1}
pred n = n-1

This type denotes that for each positive integer argument n, the result is an Int exactly
equal to n—1. When pred is applied to a concrete value, the parameter n is substituted
with this value. For example

pred 2 :: {v:Int | v = n=-1}[2/n] = {v:Int | v = 1}

Thus, for each concrete argument, the result should be the predecessor of this argument.

Specifications. A specification [?] is the expression in some formal language and at
some level of abstraction of a collection of properties some program should satisfy.
Specifications can be expressed in various techniques. For example, temporal logic
can be used to express history-based specifications, e.g., to reason about program’s
behaviour over time, while monitors can be used to express state-based specifications,
e.g., reasoning about concurrency. In this paper we use refinement type signatures to
describe (pure) functional specifications, i.e., the program is specified as a collection
of mathematical functions. This way, we limit ourselves to ignore features such as
temporal constrains, imperative features and concurrency.

Verification. Verification is a procedure that takes as input a program, i.e., defini-
tions for functions and values, and some specifications, i.e., refinement type signatures
for functions and values, and decides whether the specifications hold for the program.
Informally, it checks that each expression satisfies its type, for example, that the pred
definition actually returns the predecessor of its argument, or that at each function
application the arguments satisfy the function’s preconditions, as in the safeDiv ex-
ample. If the specifications hold, the program is Safe, otherwise it is Unsafe.
Higher-order programming languages, such as ML or Haskell, treat functions as
first order objects. Thus, one can use functions in refinements and create higher-order
predicates. For instance, the following type

f: (a—>b) -> {v:Bool|terminates f}

describes that an arbitrary functional argument should satisfy a predicate
terminates. Reasoning in a higher-order logic is undecidable, thus if arbitrary pro-
gram values appear in the refinements, the verification procedure is undecidable. As
we shall see, if the refinement language is restricted, i.e., is less expressive, verification
can be decidable.

The rest of this paper is organized as follows: In § ?? we present a core calculus that
constitutes the base for many refinement type systems. In § ?? we describe reasoning in
undecidable refinement type systems. In § ?? we present less expressive type systems
(like LiquidTypes) that are decidable. In § ?? we present how abstraction over refine-
ments enhances expressiveness of decidable type systems. Then § ?? we present L1Q-
UIDHASKELL that combines liquidTypes with abstraction over refinements to enhance

Expressions e = x|c|A:Te]| ee
Predicates p u=
Basic Types b == 1int | bool
Refinement Types T u= {v:b|p} |x:T—>T
Typing Environment r == ¢ | x:7,T

Figure 1: Syntax of \¢

expressiveness of LiquidTypes. LIQUIDHASKELL is a quite expressive verification
tool for Haskell programs that can be used to check termination (§ ??), totality (§ ??)
and general functional correctness (§ ??). Finally, we evaluate LIQUIDHASKELL and
conclude.

2 Preliminaries

To formally describe and compare type systems, we define a core calculus, following
[?, 2, ?]. We refer to our calculus as A\, and in this section we present its syntax and
type system.

2.1 Syntax

The syntax of expressions and types is summarized in Figure ??. \¢ expressions in-
clude variables, constants, typed A-abstractions and function applications. Constants
include primitive integers: 0, 1,2, ... and primitive booleans: t rue or false, which
take the basic types, integer and boolean, respectively. A basic type can be refined with
a predicate to construct a basic refinement type. Refinement types also contain function
types, in which a variable binds the argument, so that the result refinement can refer to
it. The predicate p is not yet defined. As noted earlier, if p contains arbitrary program
expressions, the type system is undecidable, but p can be restricted in such a way as to
render the type system decidable. Finally, we define a typing environment I' that maps
variables to their type, and will be used in the typing rules that we will discuss.

2.2 Typing

The typing rules used by A\¢ are summarized in Figure ??.

Type Checking. Type checking rules state that an expression e has a type 7 under an
environment ', that is, when the free variables in e are bound to values described by T,
the expression e will evaluate to a value described by 7. We write I' - e : 7 and create
one rule for each program expression.

The rule T-CONST uses a function ¢c that maps each primitive constant to its prede-
fined type. The rule T- VAR checks the type of a variable, according to the environment
T". The rule T-FUN checks the type of the function-body in the environment, extended
with the argument of the function. Since the argument type is given, it could be any
arbitrary type, say {v : b | 1}, which is invalid, as a base type is refined with the value
1, which cannot be a valid predicate. A well-formedness rule is used to check that
the argument type is well-formed, i.e., its refinements are valid predicate expressions.

Finally, the rule T-APP checks that in an application e; e the expression e; has a
function type whose argument is the type of the argument es. As we discussed in
the introduction, in the final type, the parameter x should be replaced with the actual
argument es.

Well-formedness Rules. Well-formedness rules state that a type 7 is well-formed
under an environment I, that is, the refinements in 7 are boolean expressions in the
environment I". We write I' - 7 and create one rule for each type.

The rule WF-BASE checks that in a basic refinement type, the refinement is a valid
boolean expression. The environment of this check is extended with the value that is
refined; for instance, to check the validity of {v : int | v > 0}, we check that v > 0
is a boolean expression, in an environment where v is an integer value. The rule WF-
FUN recursively applies the well-formedness rule to the argument type of the function,
and to the result type, in an environment extended with the argument parameter.

Subtyping Rules. Consider that the predefined type for the integer 2 is an integer
that is exactly equal to 2. The type system can check, via the rule T-CONST, that
0F2:{v:int | v =2}. If 2 is applied to a function that expects a positive integer,
say f it x:{v:int |v >0} — 7, the type system should also check that § - 2 :
{v:int | v > 0}. There are many ways for this check to succeed. We follow syntactic
subtyping, in which subtyping reduces to implication checking. In our example, v =
2= v > 0implies {v: int |v =2} < {v:int|v > 0}.

In the general case, subtyping rules state that the type 7 is a subtype of the type
79 under environment I, i.e., when the free variables of 7; and 75 are bound to values
described by I', the set of values described by 7; is contained in the set of values
described by 7. We write I' - 71 =< 75 and create one rule for every type.

The rule <-BASE serves two purposes. Firstly, it checks that the basic type is the
same in the two types. Secondly, it checks that under the environment I', the left hand
side refinement implies the right hand side. The implication checking is enforced by
a predicate Valid which varies between the systems that we will describe. The rule
<-FUN relates two function types according to the contravariant rule.

In the rest of this paper, we will use the core calculus A¢ upon which we will build
a subset of three typing systems [?, ?, ?].

3 Undecidable Systems

In systems where the refinement language can have arbitrary program expressions,
higher order predicates can be expressed, thus the verification procedure is undecid-
able. There are many alternatives to reason in such languages; in this section we will
present two of them. Firstly, we present Interactive theorem proving, where the proofs
are statically provided by the user. Secondly, we present Contracts Calculi, where the
specifications are checked at run time.

3.1 Interactive theorem Proving

One approach to verify that a program satisfies some specifications is for the user to
statically prove them. This approach is used by interactive theorem provers, such as
NuPRL [?], Coq [?], F* [?], Agda [?] and Isabelle [?] that can express mathematical
assertions, mechanically check proofs of these assertions, help to find formal proofs,
and extract a certified program from the constructive proof of its formal specification.

Type Checking

z:T7el
— X T-C —— T-V.
T'kec:te(e) R A AR
z:mpbFe:m Tk I'ter:z:mm—7 They:my,
T-FuN T-App
TEXe:Tpe:(z:i7p —T) Tk ey ey: Tles/x]
Well-Formedness 't~
I''v:bFp:bool 'tr, T,z:mbr71
WEF-BASE WE-FUN
PH{v:b|p} F'Fax:mp—7

Subtyping

(T,v:bkFvalid(ps = p2))
FE{v:b|p1} 2{v:b|p2}

~<-BASE

't 2t Tag 1o b rifae/a1] X 122

<-FUN
FF.Tl :Tll*)Tlel’Q:TQlHTQQ

Figure 2: Static Semantics for \¢

As an example, consider once again the pred function that computes the prede-
cessor of a positive number.

pred :: s:{n : nat | n > 0} -> {v:inat | s = S v}

This type signature says that if pred is called with a positive number s, it will return
s’s predecessors. There are two different assertions that should be proved:

* The result of the function is the predecessor of the argument. At pred’s defini-
tions the programmer should provide a proof that this assertion is indeed satis-
fied.

* The argument is a positive number. At each call site of pred, the user should
provide a proof that its argument is positive.

To illustrate programming with refinement types in Coq, we define the pred func-
tion, as presented in Figure ??, following [?]. In Coq the refinement type is defined in
the standard library, and is syntactic sugar, for the type family s ig. The function pred
takes an argument s which has two components: a natural number n and a proof pf
that this number is positive. There is a case analysis on s: if n is zero, then the proof
pf is used to construct a proof that zero is greater that zero (using a lemma zgt z) and
thus reach a contradiction; so this case can not occur. Otherwise, n has a predecessor,
say n’ and the function returns n’ combined with a proof that its successor is equal to
n. This proof is constructed by applying eq_ref 1, the only constructor of equality to
S n’.

In the call site of pred, the programmer should provide both the argument and a
proof that it is positive. As an example, if two_gt 0 is a proof that two is greater than
zero, we can have

sig (A : Type) (P : A —-> Prop) : Type :=
exist : forall x : A, P x -> sig P

"{ x : A | P }" := sig (fun x : A => P)
pred (s : {n : nat | n > 0}) : {m : nat |
projl_sig s = S m} :=
match s return {m : nat | projl_sig s = S m} with

| exist 0 pf => match zgtz pf with end
| exist (S n’) pf => exist _ n’ (egq_refl (S n’))
end.

Figure 3: The pred function in Coq

pred (exist _ 2 two_gtO0)

This application typechecks, as Coq verifies that the argument satisfies pred’s
precondition, i.e., that two_gt 0 is indeed a proof that 2 is greater than 0.

Even though this example seems tedious, interactive theorem proving can be sim-
plified using inference and tactics. However, the user still needs to provide proofs. We
discuss other systems, which remove this burden from the user.

3.2 Contracts

Another approach to verify that a program satisfies some assertions is to dynamically
check them. These assertions are called contracts, i.e., dynamically enforced pre- and
post-assertions that define formal, precise, and verifiable interface specifications for
software components. Their use in programming languages dates back to the 1970s,
when FEiffel [?], an object-oriented programming language, totally adopted assertions
and developed the “Design by Contract” philosophy [?].

Contracts are of the form: ({v:7|p})'. The refinement part, as usual, describes
the values v, of type 7 that satisfy the predicate p. The [superscript is a blame label,
used to identify the source of failures. As an example, consider a contract for positive
integers ({v:Int|v > 0}) applied to two values, 2 and 0:

{viintiv>0h 252
{v:tnt o> 0P"'0— 1

If the check succeeds, as in the case for 2, then the application will return the value, so
the first application just returns 2. If it fails, then the entire program will “blame” the
label [, raising an uncatchable exception 1} [, pronounced “blame [”.

In 2002, Findler and Felleisen [?] were the first to create a system for higher order
languages with contracts. In their system, the blame is properly assigned in the higher-
order components of the program via a “variance-contravariance” rule. Moreover, they
allow dependent contracts, i.e., contracts that have the form of a refinement function
type, where the result can depend on the argument. Finally, they treat contracts as first
class values, i.e., contracts are values that can be passed to and from functions. In

2004, Blume and McAllester [?] formally defined contract satisfaction on Findler and
Felleisen’s system, and they proved that their system is indeed sound and complete.
The contract system is sound if whenever the algorithm blames a contract declaration,
that contract declaration is actually wrong. Conversely, it is complete if blame on
an expression is explained by the fact that the expression violates one of it contract
interfaces.

Since Findler and Felleisen’s work a variety of contract calculi systems have been
studied. Broadly, these come in two different sorts. In systems with latent contracts,
types and contracts are orthogonal features. Examples of these systems include Findler
and Felleisen’s original system, Hinze et al. [?], Blume and McAllester [?], Chitil and
Huch [?], Guha et al. [?], and Tobin-Hochstadt and Felleisen [?]. By contrast, manifest
contracts are integrated into the type system, which tracks, for each value, the most
recently checked contract. Hybrid types [?] are a well-known example in this style;
others include the work of Ou et al. [?], Wadler and Findler [?], Gronski et al. [?],
Belo et al. [?], and Grennberg et al. [?]. In the rest of this subsection we discuss
manifest contracts and present a core calculus for them.

3.2.1 Manifest Contracts

Manifest Contracts Systems [?], use casts (7, = Tt>l to convert values from the source
type 75 to the target type 74 and raise 1 [if the cast fails.
As an example, consider a cast from integers to positives:

(Int = {v:Int|v > O}}I n

The system should statically verify that the value n is of the source type Int. After the
cast, this value is treated as if it has the target type {v:Int|v > 0} . Atrun-time, a
check will be made that n is actually a positive integer and if it fails it will raise 1 (.

To generalize, for base contracts a cast will behave just like a check on the target
type: applied to n, the cast either returns n or raises {f [. A function application
cast ({111 —> Tio = To1 —> 7o) £) v will reduce to (115 = To2)! (£ ({121 =
711)! v)) wrapping the argument v in a (contravariant) cast between the domain types
and wrapping the result of the application in a (covariant) cast between the range types.

To illustrate how function casts work let’s once more consider the pred example.
To get the desired type signature for pred, we have to wrap the function’s definition
in a type cast:

pred’ x=x—1
pred = (Int->Int = z: {v:Iint|v > 0}->{v:int|v = x - 1}) pred’

If we apply a positive number, say 2 :: {v:Int | v > 0}, we will have the
following computation:

pred 2

=({(Int—>Int = z:{v:Int|v > 0}->{v:Int|v = x - 1}}1 pred’) 2
—*({(Int = {v:Int|v = 2 - 1}>l) (pred’ (({v:Int|v > 0} = Int>l2))
—*({(Int = {v:Int|v = 2 - 1}>l) (pred’ 2)

—*((Int = {v:Int|v = 2 - 1})H)1

—*1

The first line is pred’s definition. In the second line the rule for functional cast is
applied. Then, the check that 2 is an integer succeeds, and 2 is applied to pred’ so,
we get 1. Finally, this result is checked to be 1 and since this check succeeds the value
is returned. If pred’ was not returning the correct value, the program would raise a
blame:

pred’ x =0

pred 2

= ({(Int—>Tnt = 2:{v:Int|v > 0}->{v:Int|v = x - 1}) pred’)?2
—*({(Int = {v:Int|v = 2 - 1}>l) (pred’ (({v:Int|v > 0} = Int>l2))
=" ({(Int = {v:Int|v = 2 - 1}>l) (pred’ 2)

—*((Int = {v:Iint|v = 2 - 1}PHo

=

The evaluation is the same as in the previous example, up to the point where the
pred’ application returns. Here, the application returns 0, thus the final check fails
and the program raises the blame .

You may notice that in both cases pred’ is applied to a positive integer. Since a
positive integer is not a primitive type, the only way to get such a type is via a cast.
Thus, for this application to statically typecheck, the argument should be wrapped in a
cast. But, if we cast a non-positive value to be positive, then the cast will fail:

pred (({(Int = {v:Int|v > 0})*“?) 0) =™ zero

We saw that two distinct casts should be used to satisfy the functions pre- and post-
conditions. These casts use different labels, with which we can track the source of
failure, if any.

3.2.2 Formal Language

Lets now extend our core calculus \. to A, so that it supports manifest contracts.
In the expressions of our language we add a blaming expression and a type cast. The
refinement language includes any core expression. Everything else remains unchanged.

In the typing judgements we add two rules: a blame expression can have any well-
formed type, while a type cast expression behaves as a function from the source to the
target type. For a casting expression to typecheck, both types should be well-formed
and compatible, i.e., their unrefined types should be the same. We check this with a
new compatibility judgement.

Expressions e u= ... |10]| (t=71)

Predicates p = e

Figure 4: Syntax from \¢ to Aco

Compatibility

Tz, Hsz 7—1H7—2

C-BASE C-FuN
{v:b|pi}]||{v:b]p2} Xy Ty = T1|| T2 Tey = T2
Type Checking
'k '+
D Nk N i ™ millm T-CAST
LEpl:r FF(n=mn):(z:7 —m)

Figure 5: Static Semantics from \¢ to Aco

4 Decidable Type Systems

In 1991 Freeman and Pfennning [?] introduced a decidable refinement type system
for a subset of ML. In their system, the programmer defines refinement types for the
vanilla data types; for example, the vanilla list data type can be refined to describe nil
lists, or singleton lists, i.e., lists with exactly one element. These definitions are used
to construct a finite datatype lattice of each ML type; a singleton list or a nill list is
also a vanilla list, thus both refined lists are less than the unrefined one in the lattice.
The datatype lattice is a representation of the subtype relationship that is used in the
refinement type inference algorithm. Since each lattice is finite, the subtyping relation
is decidable.

Later, they extended [?] their language to support linear arithmetic constraints; thus
they could encode a list with length some integer n and reason about safety of list index-
ing. In this system, subtyping reduces to predicate implication and they used a variant
of Fourier’s method [?] for constraint solving. Finally, they created DML(C) [?], an
extension of ML with refinement types, that supports array bounds check elimination,
redundant pattern matching clause removal, tag check elimination and untagged repre-
sentation of datatypes. Refinements in DML(C) are restricted to a finite and decidable
constrain domain C', which renders constraint solving, and thus subtyping decidable.

DML/(C) is a practical programming language, in the sense that programs can often
be annotated with very little internal change and the resulting constraint simplification
problems can be solved efficiently in practice. Its disadvantage is that annotation bur-
den is high for the programmer, as often 10-20% of the code is typing annotations. In
order to encourage programmers to use refinement specifications in their programs, Ou
et al. [?], proposed a language design and type system that allows programmers to add
semantic specifications to program fragments bit by bit. More specifically, for certain
program components the type checker verifies statically the refinement type specifica-
tions. The rest of the components are written as in any ordinary simply-typed program-
ming language. When control passes between different components, data flowing from
simply-typed code into refinement-typed code is checked dynamically to ensure that
the invariants hold.

Another system that combines static verification with dynamic checks is presented
in Flanagan’s Hybrid Type Checking [?]. Flanagan’s type system uses syntactic syb-
typing to create implications, as discusses in Section ??. Moreover, he assumes an
algorithm that decides the validity of the implications. For each implication the algo-

rithm runs for limited time: if it answers unsafe, the program is unsafe, but if it does not
terminate, a cast is added to postpone the check until runtime. Thus, his system checks
implications statically, whenever possible and dynamically, only when necessary.

In Liquid Types [?], implication checking always terminates, as implications be-
long to a decidable subset of first order logic. This is achieved by restricting the re-
finement language according to a finite set of qualifiers. With this technique, liquid
type system allows type inference, as a means of decreasing the annotation burden. We
present Liquid Types in the rest of the section.

Many systems discussed so far, including DML(C), Hybrid Type System and Liqg-
uid Types, use syntactic subtyping for constraint generation and SMT solvers for con-
straint solving. Satisfiability Modulo Theories (SMT) solvers solve implications for
(fragments of) first-order logic plus various standard theories such as equality, real
and integer (linear) arithmetic, uninterpreted functions, bit vectors, and (extensional)
arrays. Some of the leading systems include CVC3 [?], Yices [?], and Z3 [?].

With the advent of SMT solvers, the combination of syntactic subtyping for con-
straint generation and an SMT solver for constraint solving has been used in various
systems: Mandelbaum et al. [?], extended the domain of predicates to describe the
state and the effects of the verified programs. Suter et al. [?] increase the power of
reasoning to support user defined recursive functions. Finally, Unno et al. [?], created
a relatively complete system for higher-order functional programs.

Apart from syntactic subtyping, SMT solvers can be used in other refinement decid-
able systems: Dminor [?] uses semantic subtyping where subtyping is totally decided
by first order implication checking, while HALO [?] uses denotational semantics to
prove specification checking.

4.1 Liquid Types

In Liquid Types [?], Rondon et al. restrict the refinement language according to a finite
set of qualifiers, and achieve not only decidable type checking, but also automatic type
inference.

The system takes as input a program and a finite set of logical qualifiers which are
simple boolean predicates that encode the properties to be verified. The system then
infers liquid types, which are refinement types where the refinement predicates are
conjunctions of the logical qualifiers. Type checking and inference are decidable for
three reasons. First, they use a conservative but decidable notion of subtyping, where
subtyping reduces to implication checks in a decidable logic. Each implication holds
if and only if it yields a valid formula in the logic. Second, an expression has a valid
liquid type derivation only if it has a valid unrefined type derivation, and the refinement
type of every subexpression is a refinement of its vanilla type. Third, in any valid type
derivation, the types of certain expressions must be liquid. Thus, inference becomes
decidable, as the space of possible types is bounded.

Logical Qualifiers and Liquid Types. A logical qualifier is a boolean-valued expres-
sion over the program variables, the special value variable v which is distinct from the
program variables, and the special placeholder variable x that can be instantiated with
program variables. Let QQ be the set of logical qualifiers {0 < x, v < %, v =

* + 1}. A qualifier ¢ matches the qualifier ¢’ if replacing some variables in ¢ with x
yields ¢’. For example, the qualifier v < x matches the qualifier v < *. Q* is the
set of all qualifiers not containing x that match some qualifier in Q. For instance, if x,
y and n are program variables, Q* includes the qualifiers {0 < x, v = n + 1,

10

v < n, v < y}. Aliquid type over Q is a refinement type where the refinement
predicates are conjunctions of qualifiers from Q*.

Type Inference. Type inference is performed in three steps: (1) the vanilla type of each
expression is refined with liquid variables which represent the unknown refinements;
(2) syntactic subtyping is used to create implication constraints between the unknown
variables and the concrete refinements; (3) a theorem prover is used to find the strongest
conjunction of qualifiers in Q that satisfies the subtyping constraints.

To illustrate this procedure, consider our pred example:

pred n = n - 1

The liquid type for pred can be inferred in three steps:
(Step 1) By Hindley-Milner, we can infer that pred has the type ITnt -> Int.
Using this type we create a template for the liquid type of pred,

pred :: n:{v:Int | kn} —-> {v:Int | kp}

where kn and kp are liquid type variables representing the unknown refinements for
the argument n and the body of pred, respectively.
(Step 2) We assume a descriptive type for minus:

(=) :: x:Int => y:Int => {(v:Int | v = x - vy}
and use it to construct the type of pred’s result:
{v:iInt | v = x - y}[x/n]lly/1] = {v:Int | v =n - 1}
This type should be subtype of the template type of the body:
{viInt | v =n - 1} <: {v:Int | kp}
The above subtype reduces to the following constraint:
v =n - 1=kp

(Step 3) Since the program is “open”, i.e., there are no calls to pred, we assign kp
true, meaning that any integer argument can be passed, and use a theorem prover to
find the strongest conjunction of qualifiers in Q that satisfies the subtyping constraints.
The algorithm infers that v = n — 1 is the strongest solution for kp. By substituting
the solution for kp into the template for pred, the algorithm infers

pred :: n:Int -> {v:Int | v = n-1}

Type Checking. As one may notice the inferred type signature of pred does not
constrain the type of the argument. This is correct, as pred’s definition does not
constrain its argument. One could give pred a more precise type, say:

pred :: n:{v:Int | v > 0} -> {v:Int | n - 1}

The system can verify that this type holds, following a procedure similar to the one for
type inference:

The first step can be skipped, since there exists a concrete type for pred. The body
of the function will be type-checked against the given signature. In the second step, as

11

before, we construct the type of the body to be {v:Int | n - 1} and constrain
this type to be a subtype of pred’s result, or

{viInt | v=n -1} <: {v:Int | v=n - 1}

This subtyping reduces to a trivial implicationv = n - 1 =v = n - 1 thatcan
be proven in the third step.

Given the above type signature if pred is called with some positive integer value,
say 2, then in the call site the constraint v = 2 = v >0 will be generated, that can
be statically verified. However, if it is called with a non-positive value, say 0, we will
get the unsatisfied constraint v. = 0 = v > 0, so the program will be unsafe.

4.1.1 Applications of Liquid Types

Liquid Types, as introduced in [?], used OCaml as target language and were used to
verify array bounds checking. One year later [?], they were extended with recursive
and polymorphic refinements to enable static verification of complex data structures;
among which list sortedness or Binary Tree ordering. Liquid Types were used to verify
properties even in imperative languages. Low-level Liquid Types [?] is a refinement
type system for C based on Liquid Types to verify memory safety properties, like the
absence of array bounds violations and null-dereferences. Finally, Liquid Effects [?],
is a type-and-effect system based on refinement types which allows for fine-grained,
low-level, shared memory multithreading while statically guaranteeing that a program
is deterministic.

4.1.2 Formal Language

We extend the core calculus A¢ to Ay, a calculus that supports liquid type checking.

The crucial difference between the previous systems, is that the refinement lan-
guage can not contain arbitrary expressions, but is constrained to conjunctions of the
logical qualifiers, which form a finite set, as shown in Figure ??.

Static typing uses syntactic subtyping, as defined in Section ??. In this setting, the
subtyping relation is decidable because the refinement language, and thus the implica-
tions created, refer to a decidable logic. Finally, the Valid relation is evaluated using
the Z3 [?] SMT solver.

Predicates pu= true | g | pAp, g€ Q*

Figure 6: Syntax from A¢ to A\p,

Type Checking

I'te:m, T'Fm=<n TI'Fn
I'ke:n

T-SuB

Figure 7: Static Semantics from A¢ to Ay,

12

5 Abstract Refinement Types

Refinement type systems, as presented so far, fall into two categories. Expressive type
systems, as presented in Section ??, are statically undecidable, while decidable sys-
tems, as presented in Section ??, restrict the refinement language to a subset of first
order logic. In this section, we present abstract refinement types [?], a means to en-
hance expressiveness of a refinement system, while preserving (SMT-based) decidabil-
ity. The key insight is that we avail quantification over the refinements of data- and
function-types, simply by encoding refinement parameters as uninterpreted proposi-
tions within the refinement logic. We illustrate how this mechanism yields a variety
of sophisticated means for reasoning about programs, including: inductive refinements
for reasoning about higher-order traversal routines, compositional refinements for rea-
soning about function composition, index-dependent refinements for reasoning about
key-value maps, and recursive refinements for reasoning about recursive data types.

5.1 The key idea

Consider the monomorphic max function on Int values. We give max a refinement
type, stating that its result is greater or equal than both its arguments:

max o x:Int => y:Int => {v:Int | v >= x && v >= vy}
max x y = if x > y then x else y

If we apply max to two positive integers, say n and m, we get that the result is greater
or equal to both of them, asmax n m :: {v:Int | v >= n && v >= m}.
However, we can not reason about an arbitrary property: If we apply max to two even
numbers, can not verify that the result is also even. Thus, even though we have the
information that both arguments are even on the input, we lose it on the result.

To solve this problem, we introduce abstract refinements which let us quantify or
parameterize a type over its constituent refinements. Using abstract refinements, we
can type max as

max :: forall <p::Int->Bool>. Int<p> —-> Int<p> -> Int<p>

where Int<p> is an abbreviation for the refinement type {v:Int | p(v) }. Intu-
itively, an abstract refinement p is encoded in the refinement logic as an uninterpreted
Sfunction symbol, which satisfies the congruence axiom [?]

VX,V (X =) = P(X) = P(Y)

It is trivial to verify, with an SMT solver, that max enjoys the above type: the input
types ensure that both p (x) and p (y) hold and hence the returned value in either
branch satisfies the refinement {v:Int | p (v) },thereby ensuring the output type.

In a call site, we simply instantiate the refinement parameter of max with the con-
crete refinement, after which type checking proceeds as usual. As an example, suppose
that we call max with two even numbers:

n :: {v:Int | even v}
m :: {v:Int | even v}

Then, the abstract refinement can be instantiated with a concrete predicate even,
which will give max the type

max [even]
{v:Int | even v} -> {v:Int | even v} -> {v:Int | even v}

13

where the expression in brackets is the refinement instantiation. Since both n and m
are even numbers, they satisfy the function’s preconditions, thus we can apply them to
max, to get an even result:

max [even] nm :: {v:Int | even v}

This is the basic concept of abstract refinements, which as we shall see, have many
interesting applications.

5.2 Inductive Refinements

As a first application we present how abstract refinements allow us to formalize induc-
tion within the type system.

Consider a 1 oop function that takes as arguments a function £, an integer n, a base
case z and applies the function £ to the z, n times:

loop :: (Int -> a -> a) -> Int -> a -> a
loop £f nz = go 0 z
where go 1 acc | 1 < n = go (i+1l) (f i acc)
| otherwise = acc

Now consider a user function incr that uses 1oop and at each iteration increases the
accumulator by one:

incr :: Int —-> Int —-> Int
incr n z = loop f n z
where f i acc = acc + 1

The accumulator is initialized with z and at each 1oop’s iteration it is increased by 1.
So, at the ith iteration, the accumulator is equal to z+i. There will be n iterations,
thus the final result will be z+n. This reasoning constitutes an inductive proof that
characterizes 1oop’s behaviour. However, it is unclear how to give loop a (first-
order) refinement type that describes its inductive behaviour. Hence, it has not been
possible to verify that incr actually adds its two arguments.

Typing loop. Abstract refinements allow us to solve this problem, while remaining
within the boundaries of SMT-based decidability. We give 1oop the following type:

loop :: forall <r :: Int -> a -> Bool>
f : (1i:Int —=> a<r i> —> a<r (i+1)>)
> n : {v:Int | n >= 0}
-> z : a<r 0>
-> a<r n>

The trick is to qualify over the invariant r that 1oop establishes between the loop
iteration and the accumulator. Then the type signature encodes induction on natural
numbers: (1) n should be a natural number, thus a non-negative integer, (2) the base
case z should satisfy the invariant at 0, (3) in the inductive step, £ uses the old ac-
cumulator to create the new one, thus if the old accumulator satisfies the invariant on
the iteration i, the new one, as constructed by f, should satisfy the invariant at 1 +1.
If these four conditions hold, we conclude that the result satisfies the invariant at n.
This scheme is not novel [?]; what is new is the encoding, via uninterpreted predicate
symbols in a SMT-decidable refinement type system.

14

Using loop. We can use this expressive type of 1oop to verify inductive properties of
user functions:

incr :: n:{v:Int|v >= 0} -> z:Int -> {v:Int|v = n + z}
incr n z = loop [{\1 acc -> acc + i}] f n z
where f i acc = acc + 1

In the above example, the expression in brackets denotes the instantiation of the ab-
stract refinement. For purpose of illustration we make abstract refinement instantiation
explicit, but it could be automatically inferred via liquid typing [?].

5.3 Function Composition

As a next example, we present how one can use abstract refinements to reason about
function composition.
Consider a plusminus function that composes a plus and a minus operator:

plusminus :: n:Int

=> m:Int

—> x:Int

-> {v:Int | v = (X — m) + n}
plusminus nm x = (x — m) + n

In a first order refinement system we can verify that the function’s behaviour is captured
by its type. However, consider an alternative definition that uses function composition

(.):: (b —>c¢c)-—> (a —> b)-> a —> c.
plusminus n m x = plus . minus
where plus x = x + n
minus x = x - m

It is unclear how to give (.) a (first-order) refinement type that expresses that the
result can be refined with the composition of the refinements of both arguments results.
Thus, this definition of plusminus can not have the previous descriptive type.

Typing function composition. To solve this problem, we can use abstract refinements
and give (.) atype:

(.) :: forall < p :: b —> ¢ —> Bool
, 9 :: a —> b —-> Bool>.
f : (x:b —> c<p x>)
-> g : (x:a —> b<g x>)
-> X ! a

-> exists[z:b<g x>]. c<p z>

The trick is once again to quantify the type over refinements we care about. This time,
we use two abstract refinements: the refinement p of the result of the first function £
and the refinement g of the result of the second function g. For any argument x, we
use an existential to bind the intermediate resultto z = g x, so z satisfies g at x, and
the result satisfies p at the intermediate result.

Using function composition. With this type for function composition, user functions
get the concrete refinement of the final result to be the composition of the two refine-
ments of the argument functions.

15

Back to the plusminus example, with the appropriate refinement instantiation
we get the concrete refinement type for function composition:

(.) [{(\x v.->v =x+n}, {\x v —>v =x — m}]
f : (x:b —> {v:ic | v = x+n})
-> g : (x:a —> {v:b | v = x—-m})
-> X : a
-> exists[z:{v:b | v = x-m}]. {v:ic | v = z+n}

The result type asserts that there exists a value z, which is indeed the intermediate
result, with the property z = x — m. With this, the final result is equal to z + n.
If our logic supports equality, as SMT solvers do, we can verify that the final result
is indeed equal to (x — m)+ n. In other words, we can verify the desired type of
plusminus.

5.4 Index-Dependent Invariants

Next, we illustrate how abstract invariants allow us to specify and verify index-
dependent invariants of key-value maps. To this end, we encode vectors as functions
from Int to some generic range a. Formally, we specify vectors as

data Vec a <dom :: Int -> Bool, rng :: Int -> a —-> Bool>
=V (i:Int<dom> -> a <rng i>)

Here, we are parameterizing the definition of the type Vec with two abstract refine-
ments, dom and rng, which respectively describe the domain and range of the vector.
That is, dom describes the set of valid indices, and rng specifies an invariant relating
each Int index with the value stored at that index.

Describing Vectors. With this encoding, we can describe various vectors. To start
with we can have vectors of Int defined on positive integers with values equal to their
index:

Vec <{\v -—> v > 0}, {_ v —> v = x}> Int

Or a vector that is defined only on index 1 with value 12:
Vec <{\v -> v =1}, {(_ v —> v = 12}> Int

As a more interesting example, we can define a Null Terminating String with length
n, as a vector of Char defined on arange [0, n) with its last element equal to the
terminating character:

Vec <{\v -> 0 <= v < n}
,{\i v -> 1 = n-1 => v = “\0'}> Char

Finally, we can encode a Fibonacci memoization vector, which can be used to effi-
ciently compute a Fibonacci number, that is defined on positive integers and its value
on index 1 is either zero or the ith Fibonacci number:

Vec <{\v -> 0 <= v}
,{\i v > v != 0 =>v = fib(i)}> Char

Using Vectors. A first step towards using vectors is to supply the appropriate types
for vector operations, (e.g., set, get and empty). This usually means qualifying over

16

the domain and the range of the vectors. Then, the programmer has to specify interest-
ing vector properties, as we did for the Fibonacci memoization, or the null terminating
string. Finally, the system can verify that user functions, that transform vectors, pre-
serve these properties. This procedure is applied in [?], where, with the appropriate
types for vector operations, we reason about functions that transform null terminating
strings or efficiently compute a Fibonacci number.

5.5 Recursive Invariants

Finally, we describe how we use abstract refinements to reason about properties of
recursive data structures. For the purpose of illustration, we define a refined version of
a List datatype with values of type a:

data List a <p :: a -> a -> Bool>
= N
C

| (hd :: a) (tl :: List <p> (a <p h>))

We are parametrizing the L1 st over an abstract refinement p that relates two elements
of type a. With this, the list is either the empty list N, or contains a head hd of type a
and a tail t1 which is a list of elements of type a<p h>, i.e., these elements satisfy
the abstract refinement p at the head. Since this definition is recursively applied, the
abstract refinement p holds between each pair of elements in the list.

Unfolding Lists. To demonstrate the previous property, we will unfold a Li st with
three elements that satisfies an abstract refinement p. Consider such a list:

C hl (C h2 (C h3 N)) :: List <p> a

If we unfold this list once, by the definition of the C data constructor, the first ele-
ment is of type a, while the rest is a list with values that satisfy p at the first ele-
ment, i.e., (C h2 (C h3 N)):: List <p> a<p hl>. With a second unfold
we get that the second element satisfies p at the first element, i.e., h2: :a<p hl>,
while the rest is a list with values that satisfy p at both the first and the sec-
ond element, i.e., C h3 N :: List <p> a<p hl && p h2>. With the last
unfold we get that the last element satisfies p at all the previous elements, i.e.,
h3 :: a<p hl && p h2>, while the empty list satisfies p at every list element,
ie,N :: List <p> a<p hl && p h2 && p3>, which holds as by its defini-
tion the empty list N satisfies any refinement.

Thus, p holds between every pair of the list, as for any two two elements hi and
hj,with i < j, at the ith unfold hj satisfies p at hi.

If we instantiate the abstract refinement p with the concrete refinement
{\h v —> h <= v}, that expresses that each values is greater than the head, we
get that each element is greater than all its previous in the list. So we describe an
increasing list:

type IncrlList a = List <{\h v => h <= v}> a

We can describe different list properties, by embedding appropriate concrete refine-
ments. For instance, if we use a refinement that expresses that each value is less than the
head,i.e., {\h v —-> h >= v} ordifferent fromit,i.e., {\h v => h "= v}, we
can describe decreasing or unique element lists.

17

Using Lists. We can use the refined type for lists to verify list properties. As an
example, our system can verify that the following inserting sort algorithm actually
returns an increasing list.

insertSort :: (Ord a) => [a] —-> IncrlList a
insertSort = foldr insert N

insert :: (Ord a) => a —> IncrList a —-> IncrlList a

insert y N =CyN

insert y (C x xs) | yv <= x
| otherwise =

Cy (C x xs)
C x

(insert y xs)

5.6 Formal Language

We suggest that any refinement system can be extended with abstract refinements with-
out increasing its complexity. First of all, the syntax should be extended to support re-
finement abstraction and application. In the case of refinement abstraction, we abstract
from an expression e the refinement 7 with type 7, while in refinement application we
instantiate an abstrast refinement with a concrete one p that may have some parameters
Z. The predicates of the language should be extended to include abstract refinements,
applied to program expressions. The types of the language should also be extended to
include refinement abstraction.

Since we extended our expressions the relevant typing rules should be added. The
refinement abstraction expression is typed as an refinement abstraction type, the ab-
stract refinement is treated as a variable and the checking proceeds in a straightforward
way. In the refinement application, the abstract refinement 7 is replaced with a con-
crete one over the type 7. A formal definition of this substitution can be found in our
paper[?].

Similarly, since we extended our types, the well-formedness and subtyping rules
should be extended. In both cases, the abstract refinement is added in the environment
and the check proceeds in a straightforward way.

We note that abstract refinements can be treated as uninterprented functions in the
implication checking algorithm, thus the complexity of the system is not increased.
Moreover, they appear only in the types, thus they can be erased at run-time.

Expressions e u= ... | Ar:Te | e[ATTT,.p]
Predicates p u= ...| 7e
Types T u= ... | Vr:TT

Figure 8: Syntax of Expressions, Types and Schemas

6 LIQUIDHASKELL
LIQUIDHASKELL combines Liquid Types (§ ??) with Abstract Refinements (§ ??) to

give an expressive and decidable verification mechanism for Haskell programs. We
will start with a short description of the LIQUIDHASKELL workflow, summarized in

18

Type Checking

I''m:mFe:7m TF7T TG I'Fe:Vrimer THEXTTTZp:7x TIns
-GEN -INST
PH-Am: eV TnT ke ATT7,.p) : T[m > AT < 7.D)]

Subtyping

(T,v:bkFvalid(ps = p2))
PE{v:b|pi} <{v:b]|p}

~<-BASE

Figure 9: Static Semantics from A\¢ to A4

Loc Info
Types SMT-Fixpoint T &
| . : » ypes
é Constraints ﬁ Solution Errors

Haskell code with
specifications

»
' . Error Reporting

Figure 10: LIQUIDHASKELL Workflow

Figure ??, and continue with an example driven overview of how properties are speci-
fied and verified using the tool.

Source. LIQUIDHASKELL can be run from the command-line! or within a web-
browser?. It takes as input: (1) a single Haskell source file with code and refinement
type specifications including refined datatype definitions, measures (§ ??), predicate
and type aliases, and function signatures; (2) a set of directories containing imported
modules (including the Prelude) which may themselves contain specifications for
exported types and functions; and (3) a set of predicate fragments called qualifiers,
which are used to infer refinement types. This set is typically empty as the default set
of qualifiers extracted from the type specifications suffices for inference.

Core. LIQUIDHASKELL uses GHC to reduce the source to the Core IL [?], and, to
facilitate source-level error reporting, creates a map from Core expressions to locations
in the Haskell source.

Constraints. Then, it uses the abstract interpretation framework of Liquid Typing [?],
modified to ensure soundness under lazy evaluation [?], to generate logical constraints
from the Core IL.

Solution. Next, it uses a fixpoint algorithm (from [?]) combined with an SMT solver
to solve the constraints, and hence infers a valid refinement typing for the program.
LIQUIDHASKELL can use any solver that implements the SMT-LIB2 standard [?], in-
cluding Z3 [?], CVC4 [?], and MathSat [?].

Types & Errors. If the set of constraints is satisfiable, then LIQUIDHASKELL out-

Uhttps://hackage.haskell.org/package/liquidhaskell
Zhttp://goto.ucsd.edu/liquid/haskell/demo/

19

puts SAFE, meaning the program is verified. If instead, the set of constraints is not
satisfiable, then LIQUIDHASKELL outputs UNSAFE, and uses the invalid constraints to
report refinement type errors at the source positions that created the invalid constraints,
using the location information to map the invalid constraints to source positions. In
either case, LIQUIDHASKELL produces as output a source map containing the inferred
types for each program expression, which, in our experience, is crucial for debugging
the code and the specifications.

LIQUIDHASKELL is best thought of as an optional type checker for Haskell. By
optional we mean that the refinements have no influence on the dynamic semantics,
which makes it easy to apply LIQUIDHASKELL to existing libraries. To emphasize the
optional nature of refinements and preserve compatibility with existing compilers, all
specifications appear within comments of the form {-@ ... @-}, which we omit
below for brevity.

6.1 Specifications

A refinement type is a Haskell type where each component of the type is decorated
with a predicate from a (decidable) refinement logic. We use the quantifier-free logic of
equality, uninterpreted functions and linear arithmetic (QF-EUFLIA) [?]. For example,

{viInt | 0 <= v && v < 100}

describes Int values between 0 and 100.

Type Aliases. For brevity and readability, it is often convenient to define abbreviations
for particular refinement predicates and types. For example, we can define an alias for
the above predicate

predicate Btwn Lo N Hi = Lo <= N && N < Hi
and use it to define a type alias
type Rng Lo Hi = {v:Int | (Btwn Lo v Hi)}

We can now describe the above integers as (Rng 0 100).

Contracts. To describe the desired properties of a function, we need simply refine
the input and output types with predicates that respectively capture suitable pre- and
post-conditions. For example,

range :: lo:Int -> hi:{Int | lo <= hi}
-> [(Rng lo hi)]

states that range is a function that takes two Ints respectively named 1o and hi
and returns a list of Ints between 1o and hi. There are three things worth noting.
First, we have binders to name the function’s inputs (e.g.,, 1o and hi) and can use the
binders inside the function’s output. Second, the refinement in the input type describes
the pre-condition that the second parameter hi cannot be smaller than the first 1o.
Third, the refinement in the output type describes the post-condition that all returned
elements are between the bounds of 10 and hi.

6.2 Verification

Next, consider the following implementation for range:

20

range lo hi
| lo <= hi = lo : range (lo + 1) hi
| otherwise [1]

When we run LIQUIDHASKELL on the above code, it reports an error at the definition
of range. This is unpleasant! One way to debug the error is to determine what type
has been inferred for range, e.g.,, by hovering the mouse over the identifier in the
web interface. In this case, we see that the output type is essentially:

[{v:Int | lo <= v && v <= hi}]

which indicates the problem. There is an off-by-one error due to the problematic guard.
If we replace the second <= with a < and re-run the checker, the function is verified.

Holes. It is often cumbersome to specify the Haskell types, as those can be gleaned
from the regular type signatures or via GHC’s inference. Thus, LIQUIDHASKELL
allows the user to leave holes in the specifications. Suppose rangeFind has type

(Int => Bool) —-> Int -> Int -> Maybe Int

where the second and third parameters define a range. We can give rangeFind a
refined specification:

_ —> lo:_ -> hi:{Int | lo <= hi}
-> Maybe (Rng lo hi)

where the _ is simply the unrefined Haskell type for the corresponding position in the
type.
Inference. Next, consider the implementation

rangeFind f lo hi = find £ $ range lo hi
where find from Data.List has the (unrefined) type
find :: (a —-> Bool) —-> [a] —-> Maybe a

LIQUIDHASKELL uses the abstract interpretation framework of Liquid Typing [?] to
infer that the type parameter a of £ind can be instantiated with (Rng lo hi)
thereby enabling the automatic verification of rangeFind.

Inference is crucial for automatically synthesizing types for polymorphic instantia-
tion sites — note there is another instantiation required at the use of the apply operator $
—and to relieve the programmer of the tedium of specifying signatures for all functions.
Of course, for functions exported by the module, we must write signatures to specify
preconditions — otherwise, the system defaults to using the trivial (unrefined) Haskell
type as the signature i.e.,, checks the implementation assuming arbitrary inputs.

6.3 Measures

So far, the specifications have been limited to comparisons and arithmetic operations
on primitive values. We use measure functions, or just measures, to specify inductive
properties of algebraic data types. For example, we define a measure len to write
properties about the number of elements in a list.

measure len :: [a] —-> Int
len [] =0
len (x:xs) 1 + (len xs)

21

Measure definitions are not arbitrary Haskell code but a very restricted subset [?]. Each
measure has a single equation per constructor that defines the value of the measure
for that constructor. The right-hand side of the equation is a term in the restricted
refinement logic. Measures are interpreted by generating refinement types for the cor-
responding data constructors. For example, from the above, LIQUIDHASKELL derives
the following types for the list data constructors:

[] :: {v:[a]ll|l len v = 0}
(:) :: _ —> xs:_ —> {v:[a]] len v = 1 + len xs}

Here, 1en is an uninterpreted function in the refinement logic. We can define multi-
ple measures for a type; LIQUIDHASKELL simply conjoins the individual refinements
arising from each measure to obtain a single refined signature for each data constructor.

Using Measures. We use measures to write specifications about algebraic types. For
example, we can specify and verify that:

append :: xs:[a] -> ys:[a]
-> {v:[al]l len v = len xs + len ys}

map :t (a —> b) —> xs:[al]
-> {v:[b]| len v = len xs}
filter :: (a —-> Bool) -> xs:[a]

-> {v:[a]| len v <= len xs}

Propositions. Measures can be used to encode sophisticated invariants about algebraic
data types. To this end, the user can write a measure whose output has a special type
Prop denoting propositions in the refinement logic. For instance, we can describe a
list that contains a 0 as:

measure hasZero :: [Int] —-> Prop
hasZero [] = false
hasZero (x:xs) = x == |l (hasZero xs)

We can then define lists containing a 0 as:
type HasZero = {v : [Int] | (hasZero v)}
Using the above, LIQUIDHASKELL will accept

xs0 :: HasZero
xs0 = [2,1,0,-1,-2]

but will reject

xs’ :: HasZero
xs’ = [3,2,1]

6.4 Refined Data Types

Often, we require that every instance of a type satisfies some invariants. For example,
consider a CSV data type, that represents tables:

data CSV a = CSV { cols :: [String]
, rows :: [[a]ll }

22

With LIQUIDHASKELL we can enforce the invariant that every row in a CSV table
should have the same number of columns as there are in the header

data CSV a = CSV { cols :: [String]
, rows :: [ListL a cols] }

using the alias
type ListL a X = {v:[a]l| len v = len X}

A refined data definition is global in that LIQUIDHASKELL will reject any CSV-typed
expression that does not respect the refined definition. For example, both of the below

goodCSV = CSV ["Month", "Days"]
[["Janll , "31"]
, [HFeb , |l28"}
, [HMarH , "31"] J
badCsSv = CSV ["Month", "Days"]

[["Janll , "31"1
, ["Feb , |l28|lJ
;o ["Mar® 1]

are well-typed Haskell, but the latter is rejected by LIQUIDHASKELL. Like measures,
the global invariants are enforced by refining the constructors’ types.

6.5 Refined Type Classes

Next, let us see how LIQUIDHASKELL supports the verification of programs that use
ad-hoc polymorphism via type classes. While the implementation of each typeclass
instance is different, there is often a common interface that we expect all instances to
satisfy.

Class Measures. As an example, consider the class definition

class Indexable f where
size :: £ a —-> Int
at :: £ a —> Int -> a
For safe access, we might require that at’s second parameter is bounded by the size

of the container. To this end, we define a type-indexed measure, using the class
measure keyword

class measure sz :: a —> Nat

Now, we can specify the safe-access precondition independent of the particular in-
stances of Indexable:

class Indexable f where
size :: xXs:_ —> {v:Nat | v = sz xs}
at 1 Xs:_ —> {v:Nat | v < sz xs} —> a

Instance Measures. For each concrete type that instantiates a class, we require a
corresponding definition for the measure. For example, to define lists as an instance of
Indexable, we require the definition of the sz instance for lists:

23

instance measure sz :: [a] —-> Nat
sz [] =0
sz (x:xs8) =1 + (sz Xxs)

Class measures work just like regular measures in that the above definition is used to
refine the types of the list data constructors. After defining the measure, we can define
the type instance as:

instance Indexable [] where
size [] =0
size (x:xs) = 1 + size xs
(x:xs) ‘at' 0 = x
(x:xs) ‘at' i = index xs (i-1)

LIQUIDHASKELL uses the definition of sz for lists to check that size and at satisfy
the refined class specifications.

Client Verification. At the clients of a type-class we use the refined types of class
methods. Consider a client of Indexables

sum :: (Indexable f) => £ Int -> Int
sum xs = go 0
where
go i | 1 < size xs = xs ‘at' i + go (i+1)
| otherwise =0

LIQUIDHASKELL proves that each call to at is safe, by using the refined class spec-
ifications of Indexable. Specifically, each call to at is guarded by a check 1 <
size xs and i is increasing from 0, so LIQUIDHASKELL proves that xs ‘at‘ i
will always be safe.

6.6 Abstracting Refinements

So far, all the specifications have used concrete refinements. Often it is useful to be
able to abstract the refinements that appear in a specification. For example, consider a
monomorphic variant of max

max :: Int -=> Int -> Int
max x y = if x > y then x else y

We would like to give max a specification that lets us verify:

xPos :: {v: _ | v > 0}

xPos = max 10 13

xNeg :: {v: _ | v < 0}

xNeg = max (=5) (-8)

xEven :: {v: _ | v mod 2 == 0}
xEven = max 4 (—6)

To this end, LIQUIDHASKELL allows the user to abstract refinements over types [?],
for example by typing max as:

24

max :: forall <p :: Int -> Prop>.
Int<p> —-> Int<p> -> Int<p>

The above signature states that for any refinement p, if the two inputs of max satisfy
p then so does the output. LIQUIDHASKELL uses Liquid Typing to automatically
instantiate p with suitable concrete refinements, thereby checking xPos, xNeg, and
xEven.

Dependent Composition. Abstract refinements turn out to be a surprisingly expres-
sive and useful specification mechanism. For example, consider the function composi-
tion operator:

() :: (b —>c¢c) —> (a -—> b) —> a —> c
(.) £ gx=1£f (g x)

Previously, it was not possible to check, e.g., that:

plus3 :: x:_ —> {v:_ | v = x + 3}
plus3 = (+ 1) . (+ 2)

as the above required tracking the dependency between a, b and ¢, which is crucial for
analyzing idiomatic Haskell. With abstract refinements, we can give the (.) operator
the type:

(.) :: forall < p :: b -> ¢c —-> Prop
, 9 :: a —> b —> Prop>.
f:(x:b —> c<p x>)
-> g:(x:a —> b<g x>)
-> y:a
-> exists[z:b<g y>].c<p z>

which gets automatically instantiated at usage sites, allowing LIQUIDHASKELL to pre-
cisely track invariants through the use of the ubiquitous higher-order operator.

Dependent Pairs. Similarly, we can abstract refinements over the definition of
datatypes. For example, we can express dependent pairs in LIQUIDHASKELL by refin-
ing the definition of tuples as:
data Pair a b <p :: a -> b —-> Prop>
= Pair { fst :: a, snd :: b<p fst>}

That is, the refinement p relates the snd element with the £st. Now we can define
increasing and decreasing pairs

type IncP = Pair <{\x y -> x < y}> Int Int
type DecP Pair <{\x y -> x > y}> Int Int

and then verify that:
up :: IncP
up = Pair 2 5
dn :: DecP
dn = Pair 5 2

Now that we have a bird’s eye view of the various specification mechanisms supported
by LIQUIDHASKELL, let us see how we can profitably apply them to statically check
a variety of correctness properties in real-world codes.

25

7 Totality

Well typed Haskell code can go very wrong:
*%% Exception: Prelude.head: empty list

As our first application, let us see how to use LIQUIDHASKELL to statically guarantee
the absence of such exceptions, i.e.,, to prove various functions fotal.

7.1 Specifying Totality

First, let us see how to specify the notion of totality inside LIQUIDHASKELL. Consider
the source of the above exception:

head :: [a] —> a
head (x:_) = x

Most of the work towards totality checking is done by the translation to GHC’s Core,
in which every function is total, but may explicitly call an error function that takes
as input a string that describes the source of the pattern-match failure and throws an
exception. For example head is translated into

head d = case d of
X:XS —> X
[] -> patError "head"

Since every core function is total, but may explicitly call error functions, to prove
that the source function is total, it suffices to prove that pat Error will never be called.
We can specify this requirement by giving the error functions a false pre-condition:

patError :: {v:String | false } -> a

The pre-condition states that the input type is uninhabited and so an expression con-
taining a call to patError will only type check if the call is dead code.

7.2 Verifying Totality

The (core) definition of head does not typecheck as is; but requires a pre-condition
that states that the function is only called with non-empty lists. Formally, we do so by
defining the alias

predicate NonEmp X = 0 < len X
and then stipulating that
head :: {v : [a] | NonEmp v} —-> a

To verify the (core) definition of head, LIQUIDHASKELL uses the above signature to
check the body in an environment

d :: {0 < len d}

When d is matched with [], the environment is strengthened with the corresponding
refinement from the definition of 1en, i.e.,,

d :: {0 < (len d) && (len d) = 0}

26

Since the formula above is a contradiction, LIQUIDHASKELL concludes that the call
to patError is dead code, and thereby verifies the totality of head. Of course,
now we have pushed the burden of proof onto clients of head — at each such site,
L1QUIDHASKELL will check that the argument passed in is indeed a NonEmp list, and
if it successfully does so, then we, at any uses of head, can rest assured that head
will never throw an exception.

Refinements and Totality. While the head example is quite simple, in general,
refinements make it very easy to prove totality in complex situations, where we must
track dependencies between inputs and outputs. For example, consider the risers
function from [?]:

risers [] =
risers [x] = [[x]]
risers (x:y:zs)
| x <=y = (x:s8) : ss
| otherwise (s:s8)
where
S:ss = risers (y:etc)

I
X

The pattern match on the last line is partial; its core translation is

let (s, ss) = case risers (y:etc) of
s:ss —-> (s, ss)
[1] -> patError "..."

What if risers returns an empty list? Indeed, risers does, on occasion, return an
empty list per its first equation. However, on close inspection, it turns out that if the
input is non-empty, then the output is also non-empty. Happily, we can specify this as:

risers :: l:_ -> {v:_ | NonEmp 1 => NonEmp v}

LIQUIDHASKELL verifies that risers meets the above specification, and hence
that the patError is dead code as at that site, the scrutinee is obtained from calling
risers with a NonEmp list.

Non-Emptiness via Measures. Instead of describing non-emptiness indirectly using
len, a user could a special measure:

measure nonkEmp :: [a] —> Prop
nonEmp (x:xs) = true
nonEmp [] = false

predicate NonEmp X = nonEmp X

After which, verification would proceed analagous to the above.

Total Totality Checking. patError is one of many possible errors thrown by non-
total functions. Control.Exception.Base has several others (recSelError
, irrefutPatError, efc.) which serve the purpose of making core translations
total. Rather than hunt down and specify false preconditions one by one, the user
may automatically turn on totality checking by invoking LIQUIDHASKELL with the
-—totality command line option, at which point the tool systematically checks
that all the above functions are indeed dead code, and hence, that all definitions are
total.

27

7.3 Case Studies

We verified totality of two libraries: HsColour and Data .Map, earlier versions of
which had previously been proven total by catch [?].

Data.Map. is a widely used library for (immutable) key-value maps, imple-
mented as balanced binary search trees. Totality verification of Data.Map was
quite straightforward. We had previously verified termination and the crucial binary
search invariant [?]. To verify totality it sufficed to simply re-run verification with the
-—totality argument. All the important specifications were already captured by
the types, and no additional changes were needed to prove totality.

This case study illustrates an advantage of LIQUIDHASKELL over specialized
provers (e.g.,, catch [?]), namely it can be used to prove totality, termination and
functional correctness at the same time, facilitating a nice reuse of specifications for
multiple tasks.

HsColour. is a library for generating syntax-highlighted LATEX and HTML
from Haskell source files. Checking HsColour was not so easy, as in some cases
assumptions are used about the structure of the input data: For example, ACSS.
splitSrcAndAnnos handles an input list of St rings and assumes that whenever a
specific St ring (say breakS) appears then at least two St rings (call them mname
and annots) follow it in the list. Thus, for a list 1s that starts with breaksS the
irrefutable pattern (_:mname:annots)= L1s should be total. Currently it is some-
what cumbersome to specify such properties, and these are interesting avenues for
future work. Thus to prove totality, we added a dynamic check that validates that the
length of the input 1s exceeds 2.

In other cases assertions were imposed via monadic checks, for example
HsColour.hs reads the input arguments and checks their well-formedness using

when (length £ > 1) $ errorOut "..."

Currently LIQUIDHASKELL does not support monadic reasoning that allows assuming
that (1length f <= 1) holds when executing the action following the when check.
Finally, code modifications were required to capture properties that currently we do not
know how to express with LIQUIDHASKELL. For example, t rimContext checks if
there is an element that satisfies p in the list xs; if so it defines ys = dropWhile
(not . p)xsandcomputes tail ys. By the check we know that ys has at least
one element, the one that satisfies p, but this is a property that we could not express in
LIQUIDHASKELL.

On the whole, while proving totality can be cumbersome (as in HsColour)itis a
nice side benefit of refinement type checking, and can sometimes be a fully automatic
corollary of establishing more interesting safety properties (as in Data . Map).

8 Termination

To soundly account for Haskell’s non-strict evaluation, a refinement type checker must
distinguish between terms that may potentially diverge and those that will not [?].
Thus, by default, LIQUIDHASKELL proves termination of each recursive function. For-
tunately, refinements make this onerous task quite straightforward. We need simply
associate a well-founded termination metric on the function’s parameters, and then use
refinement typing to check that the metric strictly decreases at each recursive call. In

28

practice, due to a careful choice of defaults, this amounts to about a line of termination-
related hints per hundred lines of source. Details about the termination checker may be
found in [?], we include a brief description here to make the paper self-contained.

Simple Metrics. As a starting example, consider the fac function

fac :: n:Nat -> Nat / [n]
fac 0 =1
fac n = n * fac (n-1)

The termination metric is simply the parameter n; as n is non-negative and decreases
at the recursive call, LIQUIDHASKELL verifies that fac will terminate. We specify the
termination metric in the type signature with the / [n].

Termination checking is performed at the same time as regular type checking, as it
can be reduced to refinement type checking with a special terminating fixpoint com-
binator [?]. Thus, if LIQUIDHASKELL fails to prove that a given termination metric
is well-formed and decreasing, it will report a Termination Check Error. At
this point, the user can either debug the specification, or mark the function as non-
terminating.

Termination Expressions. Sometimes, no single parameter decreases across recursive
calls, but there is some expression that forms the decreasing metric. For example recall
range lo hi (from § ??) which returns the list of Tnts from 1o to hi:

range lo hi
| lo < hi = lo : range (lo+l) hi
| otherwise = []

Here, neither parameter is decreasing (indeed, the first one is increasing) but hi-1o
decreases across each call. To account for such cases, we can specify as the termination
metric a (refinement logic) expression over the function parameters. Thus, to prove
termination, we could type range as:

lo:Int —> hi:Int —> [(Btwn lo hi)] / [hi-1lo0]

Lexicographic Termination. The Ackermann function

ack m n
| m == 0 =n + 1
| n == 0 = ack (m-1) 1
| otherwise = ack (m-1) (ack m (n-1))

is curious as there exists no simple, natural-valued, termination metric that decreases at
each recursive call. However ack terminates because at each call either m decreases or
m remains the same and n decreases. In other words, the pair (m, n) strictly decreases
according to a lexicographic ordering. Thus LIQUIDHASKELL supports termination
metrics that are a sequence of termination expressions. For example, we can type ack
as:

ack :: m:Nat -> n:Nat -> Nat / [m, n]

At each recursive call LIQUIDHASKELL uses a lexicographic ordering to check that
the sequence of termination expressions is decreasing (and well-founded in each com-
ponent).

Mutual Recursion. The lexicographic mechanism lets us check termination of mutu-
ally recursive functions, e.g., isEven and is0dd

29

isEven 0 = True
isEven n = 1s0dd $ n-1

1is0dd n = not $ isEven n

Each call terminates as either i sEven calls 1sO0dd with a decreasing parameter, or
1s0dd calls i sEven with the same parameter, expecting the latter to do the decreas-
ing. For termination, we type:

isEven :: n:Nat -> Bool / [n, 0]
isOdd :: n:Nat -> Bool / [n, 1]

To check termination, LIQUIDHASKELL verifies that at each recursive call the metric
of the caller is less than the metric of the callee. When i sEven calls is0dd, it proves
that the caller’s metric, namely [n, 0] is greater than the callee’s [n—-1,1]. When
1s0dd calls isEven, it proves that the caller’s metric [n, 1] is greater than the
callee’s [n, 0], thereby proving the mutual recursion always terminates.

Recursion over Data Types. The above strategies generalize easily to functions that
recurse over (finite) data structures like arrays, lists, and trees. In these cases, we simply
use measures to project the structure onto Nat, thereby reducing the verification to the
previously seen cases. For example, we can prove that map

map f (x:xs) = f x : map f xs

map f [] =[]
terminates, by typing map as

(a —> b) —-> xs:[a] -> [b] / [len xs]
i.e.,, by using the measure len xs, from § ??, as the metric.

Generalized Metrics Over Datatypes. In many functions there is no single argument
whose measure provably decreases. Consider

merge (x:xs) (y:ys)
| x <y = x : merge xs (y:ys)
| otherwise = y : merge (x:xs) Vys

from the homonymous sorting routine. Here, neither parameter decreases, but the sum
of their sizes does. To prove termination, we can type merge as:

xs:[a] -> ys:[a] -> [a] / [len xs + len ys]

Putting it all Together. The above techniques can be combined to prove termination
of the mutually recursive quick-sort (from [?])

gsort (x:xs) = gpart x xs [] []
gsort [] = []

gpart x (y:ys) 1 r
| x >y = gpart x ys (y:1) r
| otherwise = gpart x ys 1 (y:r)
gpart x [] 1 r = app x (gsort 1) (gsort r)

app k [] z =k : z
app k (x:xs) X : app k xs z

30

gsort (x:xs) calls gpart x xs to partition xs into two lists 1 and r that have
elements less and greater or equal than the pivot x, respectively. When gpart finishes
partitioning it mutually recursively calls gsort to sort the two list and appends the
results with app. LIQUIDHASKELL proves sortedness as well [?] but let us focus here
on termination. To this end, we type the functions as:

gsort :: Xs:_ —> _
/ [len xs, 0]

gepart :: _ -> ys:_ —> 1l:_ —-> r:_ —> _
/ [len ys + len 1 + len r, 1 + len ys]

As before, LIQUIDHASKELL checks that at each recursive call the caller’s metric is less

than the callee’s. When gsort calls gpart the length of the unsorted list len (x:

xs) exceeds the len xs + len [] + len []. When gpart recursively calls

itself the first component of the metric is the same, but the length of the unpartitioned

list decreases, i.e., 1 + len y:ysexceeds 1 + len ys. Finally, when gpart

calls gsort wehave len ys + len 1 + len rexceedsbothlen 1 and len
r, thereby ensuring termination.

Automation: Default Size Measures. The gsort example illustrates that while
LIQUIDHASKELL is very expressive, devising appropriate termination metrics can be
tricky. Fortunately, such patterns are very uncommon, and the vast majority of cases in
real world programs are just structural recursion on a datatype. LIQUIDHASKELL auto-
mates termination proofs for this common case, by allowing users to specify a default
size measure for each data type, e.g., Len for [a]. Now, if no explicit termination
metric is given, by default LIQUIDHASKELL assumes that the first argument whose
type has an associated size measure decreases. Thus, in the above, we need not specify
metrics for fac or map as the size measure is automatically used to prove termination.
This heuristic suffices to automatically prove 67% of recursive functions terminating.

Disabling Termination Checking. In Haskell’s lazy setting not all functions are
terminating. LIQUIDHASKELL provides two mechanisms the disable termination prov-
ing. A user can disable checking a single function by marking that function as lazy.
For example, specifying lazy repeat tells the tool to not prove repeat termi-
nates. Optionally, a user can disable termination checking for a whole module by using
the command line argument ——no-termination for the entire file.

9 Functional Correctness Invariants

So far, we have considered a variety of general, application independent correctness
criteria. Next, let us see how we can use LIQUIDHASKELL to specify and statically
verify critical application specific correctness properties, using two illustrative case
studies: red-black trees, and the stack-set data structure introduced in the xmonad
system.

9.1 Red-Black Trees

Red-Black trees have several non-trivial invariants that are ideal for illustrating the
effectiveness of refinement types, and contrasting with existing approaches based on
GADTs [?]. The structure can be defined via the following Haskell type:

31

data Col =R | B
data Tree a = Leaf
| Node Col a (Tree a) (Tree a)

However, a Tree is a valid Red-Black tree only if it satisfies three crucial invariants:

* Order: The keys must be binary-search ordered, i.e., the key at each node must
lie between the keys of the left and right subtrees of the node,

¢ Color: The children of every red Node must be colored black, where each Lea f
can be viewed as black,

e Height: The number of black nodes along any path from each Node to its Leafs
must be the same.

Red-Black trees are especially tricky as various operations create trees that can
temporarily violate the invariants. Thus, while the above invariants can be specified
with singletons and GADTs, encoding all the properties (and the temporary violations)
results in a proliferation of data constructors that can somewhat obfuscate correctness.
In contrast, with refinements, we can specify and verify the invariants in isolation (if
we wish) and can trivially compose them simply by conjoining the refinements.

Color Invariant. To specify the color invariant, we define a black-rooted tree as:
measure isB :: Tree a —> Prop

color (Node ¢ x 1 r) = c ==
color (Leaf) true

and then we can describe the color invariant simply as:

measure 1isRB :: Tree a —-> Prop
isRB (Leaf) = true
isRB (Node ¢ x 1 r) = isRB 1 && isRB r &&
c =R => (isB 1 && isB r)

The insertion and deletion procedures create intermediate almost red-black trees where
the color invariant may be violated at the root. Rather than create new data constructors
we can define almost red-black trees with a measure that just drops the invariant at the
root:

measure almostRB :: Tree a —> Prop
almostRB (Leaf) = true
almostRB (Node ¢ x 1 r) isRB 1 && 1isRB r

Height Invariant. To specify the height invariant, we define a black-height measure:

measure bh :: Tree a —> Int
bh (Leaf) =0
bh (Node ¢ x 1 r) = Dbh 1
+ if ¢ = R then 0 else 1

and we can now specify black-height balance as:

measure isBal :: Tree a —-> Prop
isBal (Leaf) = true
isBal (Node ¢ x 1 r) = bh 1 = bh r

&& isBH 1 && isBH r

32

Note that bh only considers the left sub-tree, but this is legitimate, because isBal
will ensure the right subtree has the same bh.

Order Invariant. Finally, to encode the binary-search ordering property, we parame-
terize the datatype with abstract refinements:

data Tree a <l::a->a->Prop, r::a->a->Prop>

= Leaf
| Node { c :: Col
, key :: a
, 1t :: Tree<l,r> a<l key>
, rt :: Tree<l,r> a<r key> }

Intuitively, 1 and r are relations between the root key and each element in its left and
right subtree respectively. Now the alias:

type OTree a
= Tree <{\k v —> v<k}, {\k v —> v>k}> a

describes binary-search ordered trees!

Composing Invariants. Finally, we can compose the invariants, and define a Red-
Black tree with the alias:

type RBT a = {v:0Tree a | isRB v && isBal v}

An almost Red-Black tree is the above with isRB replaced with almostRB, i.e.,
does not require any new types or constructors. If desired, we can ignore a particular
invariant simply by replacing the corresponding refinement above with true. Given
the above — and suitable signatures LIQUIDHASKELL verifies the various insertion,
deletion and rebalancing procedures for a Red-Black Tree library.

9.2 Stack Sets in XMonad

xmonad is a dynamically tiling X1 1 window manager that is written and configured
in Haskell. The set of windows managed by XMonad is organized into a hierarchy of
types. At the lowest level we have a set of windows a represented as a Stack a

data Stack a = Stack { focus :: a
, up 1 [al
, down :: [a] }

The above is a zipper [?] where focus is the “current” window and up and down the
windows “before” and “after” it. Each Stack is wrapped inside a Workspace that
has additional information about layout and naming:

data Workspace i 1 a = Workspace

{ tag HER
, layout :: 1
, stack :: Maybe (Stack a) }

which is in turn, wrapped inside a Screen:

data Screen i 1 a sid sd = Screen
{ workspace :: Workspace i1 1 a
, Screen :: sid
, screenDetail :: sd }

33

The set of all screens is represented by the top-level zipper:

data StackSet i1 1 a sid sd = StackSet

{ cur :: Screen i 1 a sid sd

, vis :: [Screen i 1 a sid sd]
, hid :: [Workspace 1 1 al]

, flt :: M.Map a RationalRect }

Key Invariant: Uniqueness of Windows. The key invariant for the StackSet type
is that each window a should appear at mostonceina StackSet i 1 a sid sd.
That is, a window should not be duplicated across stacks or workspaces. Informally,
we specify this invariant by defining a measure for the set of elements in a list, St ack,
Workspace and Screen, and then we use that measure to assert that the relevant
sets are disjoint.

Specification: Unique Lists. To specify that the set of elements in a list is unique,
i.e., there are no duplicates in the list we first define a measure denoting the set using
Z3’s [?] built-in theory of sets:

measure elts :: [a] —> Set a
elts ([]) = emp
elts (x:xs) = cup (sng x) (elts xs)

Now, we can use the above to define uniqueness:

measure isUniqg :: [a] —-> Prop
isUnig ([]) = true
isUnig (x:xs) = notIn x xs && 1isUniqg xs

where not In is an abbreviation:

predicate notIn X S = not (mem X (elts S))

Specification: Unique Stacks. We can use 1 sUnigq to define unique, i.e.,, duplicate
free, Stacks as:

data Stack a = Stack

{ focus :: a
, up :: {v:[al | Unigl v focus}
, down :: {v:[a] | Unig2 v focus up} }

using the aliases

predicate Unigl V X

= i1sUnig V && notIn X V
predicate Unig2 V X Y

= Unigl V X && disjoint Y V
predicate disjoint X Y

= cap (elts X) (elts Y) = emp

i.e., the field up is a unique list of elements different from focus, and the field down
is additionally disjoint from up.

Specification: Unique StackSets. It is straightforward to lift the e 1t s measure to the
Stack and the wrapper types Workspace and Screen, and then correspondingly
lift isUnigto [Screen] and [Workspace]. Having done so, we can use those
measures to refine the type of StackSet to stipulate that there are no duplicates:

34

type UnigStackSet i 1 a sid sd
= {v: StackSet i 1 a sid sd | NoDups V}

using the predicate aliases

predicate NoDups V
= disjoint3 (hid V) (cur V) (vis V)
&& 1isUnig (vis V)
&& 1sUnig (hid V)

predicate disjoint3 X Y Z
= disjoint X Y
&& disjoint Y Z
&& disjoint X Z

LIQUIDHASKELL automatically turns the record selectors of refined data types to mea-
sures that return the values of appropriate fields, hence hid x (resp. cur x,vis x)
are the values of the hid, cur and vis fields of a StackSet named x.

Verification. LIQUIDHASKELL uses the above refined type to verify the key invariant,
namely, that no window is duplicated. Three key actions of the, eventually successful,
verification process can be summarized as follows:

o Strengthening library functions. xmonad repeatedly concatenates the lists of a
Stack. To prove that for some s: Stack a, (up s ++ down s) isaunique
list, the type of (++) needs to capture that concatenation of two unique and
disjoint lists is a unique list. For verification, we assumed that Prelude’s (++)
satisfies this property. But, not all arguments of (++) are unique disjoint lists: "
StackSet"++"error" is a trivial example that does not satisfy the assumed
preconditions of (++) thus creating a type error. Currently, LIQUIDHASKELL
does not support intersection types, thus we used an unrefined (++.) variant of
(++) for such cases.

* Restrict the functions’ domain. modify is a maybe-like function that, given
a default value x, a function £, and a StackSet s, applies £ on the Maybe (
Stack a) values inside s.

modify :: x:{v:Maybe (Stack a) | isNothing v}
-> (y:Stack a
-> Maybe {v:Stack a | SubElts v y})
—-> UnigStackSet 1 1 a s sd
—-> UnigStackSet 1 1 a s sd

Since inside the StackSet s each y: Stack a could be replaced with either the
default value x or with £ y, we need to ensure that both these alternatives will
not insert duplicates. This imposes the curious precondition that the default value
should be Nothing.

* Code inlining Given a tag i1 and a StackSet s, view i s will set the current
Screen to the screen with tag i, if such a screen exists in s. Below is the original
definition for view in case when a screen with tag i exists in visible screens

view :: (Eq s, Eq 1) => 1
-> StackSet 1 1 a s sd

35

-> StackSet i 1 a s sd
view 1 s
| Just x <- find ((i==).tag.workspace)
(visible s)

= s { current X

, visible

current s
deleteBy (equating screen) x
(visible s) }

Verification of this code is difficult as we cannot suitably type find. Instead
we inline the call to £ind and the field update into a single recursive function
raiseIfVisible i s thatin-place replaces x with the current screen.

Finally, xmonad comes with an extensive suite of QuickCheck properties, that
were formally verified in Coq [?]. In future work, it would be interesting to do a
similar verification with LIQUIDHASKELL, to compare the refinement types to proof-
assistants.

10 Evaluation

We now turn to a quantitative evaluation of our experiments with LIQUIDHASKELL.

Module Version LOC Mod Fun Specs Annot Qualif | Time (s)
GHC.LIST 7.4.1 309 1 66 29 /38 6/6 0/0 15
DATA.LIST 45.1.0 504 1 97 15/26 6/6 3/3 11
DATA.MAP.BASE 0.5.0.0 1396 1 180 125/173 13/13 0/0 174
DATA.SET.SPLAY 0.1.1 149 1 35 27137 5/5 0/0 27
HSCOLOUR 1.20.0.0 1047 16 234 19/40 5/5 1/1 196
XMONAD.STACKSET 0.11 256 1 106 74/213 3/3 474 27
BYTESTRING 0.9.2.1 3505 3 569 307 / 465 55/55 477124 294
TEXT 0.11.2.3 3128 17 493 305/717 52/54 49797 499
VECTOR-ALGORITHMS 0.5.4.2 1218 10 99 76 /266 9/9 13/13 89
Total 11512 56 1879 | 977/1975 154/156 117/242 1336

Table 1: A quantitative evaluation of our experiments. Version is version of the checked li-
brary. LOC is the number of non-comment lines of source code as reported by sloccount.
Mod is the number of modules in the benchmark and Fun is the number of functions. Specs is
the number (/ line-count) of type specifications and aliases, data declarations, and measures pro-
vided. Annot is the number (/ line-count) of other annotations provided, these include invariants
and hints for the termination checker. Qualif is the number (/ line-count) of provided qualifiers.
Time (s) is the time, in seconds, required to run LIQUIDHASKELL.

10.1 Results

We have used the following libraries as benchmarks:

* GHC.List andData.List, which together implement many standard list op-
erations; we verify various size related properties,

* Data.Set.Splay, which implements a splay-tree based functional set data
type; we verify that all interface functions terminate and return well ordered
trees,

* Data.Map.Base, which implements a functional map data type; we verify
that all interface functions terminate and return binary-search ordered trees [?],

36

* HsColour, a syntax highlighting program for Haskell code, we verify totality
of all functions (§ ??),

* XMonad, a tiling window manager for X11, we verify the uniqueness invariant
of the core datatype, as well as some of the QuickCheck properties (§ ??),

* Bytestring, a library for manipulating byte arrays, we verify termination,
low-level memory safety, and high-level functional correctness properties (§ ??),

e Text, alibrary for high-performance unicode text processing; we verify various
pointer safety and functional correctness properties (§ ??), during which we find
a subtle bug,

* Vector—-Algorithms, which includes a suite of “imperative” (i.e., monadic)
array-based sorting algorithms; we verify the correctness of vector accessing,
indexing, and slicing efc..

Table ?? summarizes our experiments, which covered 56 modules totaling 11,512
non-comment lines of source code and 1,975 lines of specifications. The results are on
a machine with an Intel Xeon X5660 and 32GB of RAM (no benchmark required more
than 1GB.) The upshot is that LIQUIDHASKELL is very effective on real-world code
bases. The total overhead due to hints, i.e., the sum of Annot and Qualif, is 3.5% of
LOC. The specifications themselves are machine checkable versions of the comments
placed around functions describing safe usage and behavior, and required around two
lines to express on average. While there is much room for improving the running times,
the tool is fast enough to be used interactively, verify a handful of API functions and
associated helpers in isolation.

10.2 Limitations

Our case studies also highlighted several limitations of LIQUIDHASKELL that we will
address in future work. In most cases, we could alter the code slightly to facilitate
verification.

Ghost parameters. are sometimes needed in order to materialize values that are not
needed for the computation, but are necessary to prove various specifications. For
example, the piv parameter in the append function for red-black trees (§ ??).

Fixed-width integer and floating-point numbers. LIQUIDHASKELL uses the theo-
ries of linear arithmetic and real numbers to reason about numeric operations. In some
cases this causes us to lose precision, e.g., when we have to approximate the behavior
of bitwise operations. We could address this shortcoming by using the theory of bit-
vectors to model fixed-width integers, but we are unsure of the effect this would have
on LIQUIDHASKELL’s performance.

Higher-order functions. must sometimes be specialized because the original type
is not precise enough. For example, the concat function that concatenates a list of
input ByteSt rings pre-allocates the output region by computing the total size of the
input.

len = sum . map length $ xs

Unfortunately, the type for map is not sufficiently precise to conclude that the value
lenequals bLens xs, se we must manually specialize the above into a single recur-
sive traversal that computes the lengths. Rather than complicating the type system with

37

a very general higher-order type for map we suspect the best way forward will be to
allow the user to specify inlining in a clean fashion.

Functions as Data. Several libraries like Text encode data structures like (finite)
streams using functions, in order to facilitate fusion. Currently, it is not possible to
describe sizes of these structures using measures, as this requires describing the sizes
of input-output chains starting at a given seed input for the function. In future work,
it will be interesting to extend the measure mechanism to support multiple parameters
(e.g., a stream and a seed) in order to reason about such structures.

Lazy binders. sometimes get in the way of verification. A common pattern in Haskell
code is to define all local variables in a single where clause and use them only in
a subset of all branches. LIQUIDHASKELL flags a few such definitions as unsafe,
not realizing that the values will only be demanded in a specific branch. Currently,
we manually transform the code by pushing binders inwards to the usage site. This
transformation could be easily automated.

Assumes. which can be thought of as “hybrid” run-time checks, had to be placed in a
couple of cases where the verifier loses information. One source is the introduction of
assumptions about mathematical operators that are currently conservatively modeled in
the refinement logic (e.g., that multiplication is commutative and associative). These
may be removed by using more advanced non-linear arithmetic decision procedures.

Error messages. are a crucial part of any type-checker. Currently, we report error
locations in the provided source file and output the failed constraint(s). Unfortunately,
the constraints often refer to intermediate values that have been introduced during the
ANF-transformation, which obscures their relation to the program source. In future
work, we may attempt to map these intermediate values back to their source expres-
sions, which should increase the comprehensibility of our error messages. Another
interesting possibility would be to search for concrete counterexamples when L1QUID-
HASKELL detects an invalid constraint.

11 Conclusion

In this report we presented various refinement type systems. We started with type sys-
tems where the refinement language expresses arbitrary program expressions. Even
though these systems are expressive, the assertions formed can not be statically ver-
ified. To reason in such systems, we presented two alternatives: interactive theorem
proving, where the user should provide explicit proofs, and contracts calculi, where the
assertions are verified at runtime. Next we presented refinement type system which re-
strict the refinement language, so as to render type checking decidable. As an example,
we presented Liquid Types, in which the refinement language is restricted according to
a finite set of qualifiers and allows not only decidable verification, but also automatic
type inference. Then, we presented Abstract Refinement Types, which can be used
in a refinement type system to enhance expressiveness without increasing complexity.
Then, we present LIQUIDHASKELL that combines liquidTypes with abstraction over
refinements to enhance expressiveness of LiquidTypes. LIQUIDHASKELL is a quite ex-
pressive verification tool for Haskell programs that can be used to check termination,
totality and general functional correctness. Finally, we evaluate LIQUIDHASKELL in
real world Haskell libraries.

38

