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Abstract
Haskell has many delightful features. Perhaps the one most beloved
by its users is its type system that allows developers to spec-
ify and verify a variety of program properties at compile time.
However, many properties, typically those that depend on rela-
tionships between program values are impossible, or at the very
least, cumbersome to encode within the existing type system. Many
such properties can be verified using a combination of Refinement
Types and external SMT solvers. We describe the refinement type
checker LIQUIDHASKELL, that we have used to specify and verify
a variety of properties of over 10,000 lines of Haskell code from
various popular libraries, including containers, hscolour,
bytestring, text, vector-algorithms and xmonad.
First, we present a high-level overview of LIQUIDHASKELL,
through a tour of its features. Second, we present a qualitative
discussion of the kinds of properties that can be checked – ranging
from generic application independent criteria like totality and ter-
mination, to application specific concerns like memory safety and
data structure correctness invariants. Finally, we present a quantita-
tive evaluation of the approach, with a view towards measuring the
efficiency and programmer’s effort required for verification, and
discuss the limitations of the approach.

1. Introduction
Refinement types enable specification of complex invariants by
extending the base type system with refinement predicates drawn
from decidable logics. For example,

type Nat = {v:Int | 0 <= v}
type Pos = {v:Int | 0 < v}

are refinements of the basic type Int with a logical predicate that
states the values v being described must be non-negative and pos-
tive respectively. We can specify contracts of functions by refining
function types. For example, the contract for div

div :: n:Nat -> d:Pos -> {v:Nat | v <= n}

states that div requires a non-negative dividend n and a positive
divisor d, and ensures that the result is less than the dividend. If
a program (refinement) type checks, we can be sure that div will
never throw a divide-by-zero exception.

What are refinement types good for? While there are several
papers describing the theory behind how refinement types work [2,
10, 26, 28, 35, 40, 42], even for non-strict languages [37], there
is rather less literature on how the approach can be applied to
large, real-world codes. In particular, we try to answer the following
questions:

1. What properties can be specified with refinement types?

2. What inputs are provided and what feedback is received?

3. What is the process for modularly verifying a library?

4. What are the limitations of refinement types?

In this paper, we attempt to investigate this question, by us-
ing the refinement type checker LIQUIDHASKELL, to specify and
verify a variety of properties of over 10,000 lines of Haskell code
from various popular libraries, including containers, hscolor
, bytestring, text, vector-algorithms and xmonad. First
(§ 2), we present a high-level overview of LIQUIDHASKELL,
through a tour of its features. Second, we present a qualitative
discussion of the kinds of properties that can be checked – rang-
ing from generic application independent criteria like totality (§ 3)
and termination (§ 4), to application specific concerns like mem-
ory safety (§ 5) and functional correctness properties (§ 6). Finally
(§ 7), we present a quantitative evaluation of the approach, with
a view towards measuring the efficiency and programmer’s effort
required for verification, and we discuss various limitations of the
approach which could provide avenues for further work.

2. LIQUIDHASKELL
Let us start with an example driven overview of how properties are
specified and verified with LIQUIDHASKELL.

Input LIQUIDHASKELL can be run from the command-line 1 or
within a web-browser 2. The tool takes as input (1) a single Haskell
target source file with code and refinement type specifications in-
cluding refined datatype definitions, measures, predicate and type
aliases, and function signatures, (2) a set of directories containing
imported modules (including the Prelude) which may themselves
contain specifications for exported types and functions, and, (3) an
optional set of predicate fragments called qualifiers which are used
to infer refinement types using the abstract interpretation frame-
work of Liquid Typing [28].
Output The tool returns as output either SAFE or UNSAFE together
with a list of source positions corresponding to expressions that fail
to typecheck. LIQUIDHASKELL also produces as output a source
map containing the inferred types for each program expression,
which, in our experience is crucial for debugging the code (and
specifications!).
Optional Typing LIQUIDHASKELL is best thought of as an op-
tional type checker for Haskell. By optional we mean that the re-
finements have no influence on the dynamic semantics. This makes
it easy to apply LIQUIDHASKELL to existing libraries. To empha-
size the optional nature of refinements and preserve compatibility
with existing compilers (and as a nod to the ESC/tools) all spec-
ifications are specified as comments using the special parentheses
{-@ ... @-} which we omit below for clarity.

2.1 Specifications
A refinement type is a Haskell type where each component of the
type is decorated with a predicate drawn from a decidable refine-

1 https://hackage.haskell.org/package/liquidhaskell
2 http://goto.ucsd.edu/˜rjhala/liquid/haskell/demo/
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ment logic. In our case, we use the logic of equality, uninterpreted
functions and linear arithmetic (EUFLIA) [22]. For example,

{v:Int | 0 <= v && v < 100}

describes Int values between 0 and 100.
Type Aliases For brevity and readability, it is often convenient to
define abbreviations for particular refinement predicates and types.
For example, we can define an alias for the above predicate

predicate Btwn Lo N Hi = Lo <= N && N < Hi

and use it to define a type alias

type Rng Lo Hi = {v:Int | (Btwn Lo v Hi)}

We can now describe the above integers as (Rng 0 100).
Contracts To describe the desired properties of a function, we
need simply refine the input and output types with predicates that
respectively capture suitable pre- and post-conditions. For example,

range :: lo:Int -> hi:{Int | lo <= hi}
-> [(Rng lo hi)]

states that range is a function that takes two Ints respectively
named lo and hi and returns a list of Ints between lo and hi.
There are three things worth noting. First, we have binders to name
the function’s inputs (e.g., lo and hi) and can use the binders inside
the function’s output. Second, the refinement in the input type
describes the pre-condition that the second parameter hi cannot
be smaller than the first lo. Third, the refinement in the output type
describes the post-condition that all returned elements are between
the bounds of lo and hi.

2.2 Verification
Next, consider the following implementation for range:

range lo hi
| lo <= hi = lo : range (lo + 1) hi
| otherwise = []

When we run LIQUIDHASKELL on the above code, it reports an
error at the definition of range. This is unpleasant! One way to
debug the error is to determine what type has been inferred for
range, e.g., by hovering the mouse over the identifier in the web
interface. In this case, we see that the output type is essentially:

[{v:Int | lo <= v && v <= hi}]

which indicates the problem. There is an off-by-one error due to
the problematic guard. If we replace the <= with a < and re-run the
checker, the function is verified.
Holes Often it is cumbersome to specify the Haskell types, as
those can be gleaned from the regular type signatures or via GHC’s
inference. Thus, LIQUIDHASKELL allows the user to leave holes in
the specifications. Suppose rangeFind has type

(Int -> Bool) -> Int -> Int -> Maybe Int

where the second and third parameters define a range. We can give
rangeFind a refined specification:

_ -> lo:_ -> hi:{Int | lo <= hi}
-> Maybe (Rng lo hi)

where the _ is simply the unrefined Haskell type for the correspond-
ing position in the type.
Inference Next, consider the implementation

rangeFind f lo hi = find f $ range lo hi

where find from Data.List has the (unrefined) type

find :: (a -> Bool) -> [a] -> Maybe a

LIQUIDHASKELL uses the abstract interpretation framework of
Liquid Typing [28], to infer that the type parameter a of find can
be instantiated with (Rng lo hi) thereby enabling the automatic
verification of rangeFind.

Inference is crucial for automatically synthesizing types for
polymorphic instantiation sites – note there is another instantiation
required at the use of the apply operator $ – and to relieve the pro-
grammer of the tedium of writing down signatures for all functions.
Of course, for functions exported by the module, we must write sig-
natures to specify preconditions – otherwise, the system defaults
to using the trivial (unrefined) Haskell type as the signature i.e.,
checks the implementation assuming arbitrary inputs.

2.3 Measures
So far, the specifications have been limited to comparisons and
arithmetic operations on primitive values. We use measure func-
tions, or just measures, to specify properties of compound, user-
defined algebraic data types. For example, suppose we want to
write properties about the number of elements in a list. We can
do this via a measure len defined as:

measure len :: [a] -> Int
len ([]) = 0
len (x:xs) = 1 + (len xs)

In general, a measure has, for each data constructor, a single equa-
tion that defines the value of the measure for that constructor. Mea-
sures are implemented by generating refinement types for the data
constructors. For example, from the above, LIQUIDHASKELL de-
rives the following types for list data constructors

[] :: {v:[a]| len v = 0}
(:) :: _ -> xs:_ -> {v:[a]| len v = 1 + len xs}

Where len is an uninterpreted function in the refinement logic. We
can define multiple measures for a type; LIQUIDHASKELL simply
conjoins the individual refinements arising from each measure to
obtain a single refined signature for each data constructor.
Using Measures We can use measures to write specifications about
richer types. For example, we can specify and verify that:

append :: xs:[a] -> ys:[a]
-> {v:[a]| len v = len xs + len ys}

map :: (a -> b) -> xs:[a]
-> {v:[b]| len v = len xs}

filter :: (a -> Bool) -> xs:[a]
-> {v:[a]| len v <= len xs}

Propositions In addition to allowing the specification of structural
features like lengths, heights and so on, measures can be used to
encode sophisticated invariants about compound types. To this end,
the user can write a measure whose output has a special type Prop
denoting propositions in the refinement logic. For instance, we can
describe a list that contains a 0 as:

measure hasZero :: [Int] -> Prop
hasZero [] = false
hasZero (x:xs) = x == 0 || (hasZero xs)

We can then define lists containing a 0 as:

type HasZero = {v : [Int] | (hasZero v)}

Using the above, LIQUIDHASKELL will accept

xs0 :: HasZero
xs0 = [2,1,0,-1,-2]
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but will reject

xs’ :: HasZero
xs’ = [3,2,1]

2.4 Refined Data Types
Often, we require that every instance of a type satisfies some invari-
ants. For example, consider a CSV data type, that represents tables:

data CSV a = CSV { cols :: [String]
, rows :: [[a]] }

With LIQUIDHASKELL we can enforce the invariant that every row
in a CSV table should have the same number of columns as there are
in the header

data CSV a = CSV { cols :: [String]
, rows :: [ListL a cols] }

using the alias

type ListL a X = {v:[a]| len v = len X}

A refined data definition is global in that, LIQUIDHASKELL will
reject any CSV-typed expression that does not respect the refined
definition. For example, both of the below

goodCSV = CSV [ "Month", "Days"]
[ ["Jan" , "31"]
, ["Feb , "28"]
, ["Mar" , "31"] ]

badCSV = CSV [ "Month", "Days"]
[ ["Jan" , "31"]
, ["Feb , "28"]
, ["Mar"] ]

are well-typed Haskell, but the latter is rejected by LIQUID-
HASKELL. Like measures, the global invariants are enforced by
refining the constructors’ types.

2.5 Refined Type Classes
Next, let us see how LIQUIDHASKELL supports the verification of
programs that use ad-hoc polymorphism via type classes. While
the implementation of each typeclass instance is different, there is
often a common interface that we expect all instances to satisfy.
Class Measures As an example, consider the class definition

class Indexable f where
size :: f a -> Int
at :: f a -> Int -> a

For safe access, we might require that at’s second parameter is
bounded by the size of the container. To this end, we define a
type-indexed measure, using the class measure keyword

class measure sz :: a -> Nat

Now, we can specify the safe-access precondition independent of
the particular instances of Indexable:

class Indexable f where
size :: xs:_ -> {v:Nat | v = sz xs}
at :: xs:_ -> {v:Nat | v < sz xs} -> a

Instance Measures For each concrete type that instantiates a class,
we require a corresponding definition for the measure. For exam-
ple, to define lists as an instance of Indexable, we require the
definition of the sz instance for lists:

instance measure sz :: [a] -> Nat
sz [] = 0
sz (x:xs) = 1 + (sz xs)

Class measures work just like regular measures in that the above
definition is used to refine the types of the list data constructors.
After defining the measure, we can define the type instance as:

instance Indexable [] where
size [] = 0
size (x:xs) = 1 + size xs

(x:xs) ‘at‘ 0 = x
(x:xs) ‘at‘ i = index xs (i-1)

LIQUIDHASKELL uses the definition of sz for lists to check that
size and at satisfy the refined class specifications.

Client Verification On the clients of a type-class we simply use the
refined types of class methods. Consider a client of Indexables:

sum :: (Indexable f) => f Int -> Int
sum xs = go 0
where
go i | i < size xs = xs ‘at‘ i + go (i+1)

| otherwise = 0

LIQUIDHASKELL proves that each call to at is safe, by using the
refined class specifications of Indexable. Specifically, each call to
at is guarded by a check i < size xs and i is increasing from 0,
so LIQUIDHASKELL proves that xs ‘at‘ i will always be safe.

2.6 Abstracting Refinements
So far, all the specifications use concrete refinements. Often it
is useful to be able to abstract the refinements that appear in a
specification. For example, consider a monomorphic variant of max

max :: Int -> Int -> Int
max x y = if x > y then x else y

We would like to give max a specification that lets us verify:

xPos :: {v: _ | v > 0}
xPos = max 10 13

xNeg :: {v: _ | v < 0}
xNeg = max (-5) (-8)

xEven :: {v: _ | v mod 2 == 0}
xEven = max 4 (-6)

To this end, LIQUIDHASKELL allows the user to abstract refine-
ments over types [36], for example by typing max as:

max :: forall <p :: Int -> Prop>.
Int<p> -> Int<p> -> Int<p>

The above signature states that for any refinement p, if the two in-
puts of max enjoy p then, so does the output. LIQUIDHASKELL
uses liquid typing to automatically instantiate p with suitable con-
crete refinements, thereby checking xPos, xNeg and xEven.

Dependent Composition Abstract refinements turn out to be a
surprisingly expressive and useful specification mechanism. For
example, consider the function composition operator:

(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g x = f (g x)

Previously, it was not possible to check, e.g. that:

plus3 :: x:_ -> {v:_ | v = x + 3}
plus3 = (+ 1) . (+ 2)

as the above required tracking the dependency between a, b and c,
which is crucial for analyzing idiomatic Haskell codes.

With abstract refinements, we can give the operator the type:
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(.) :: forall < p :: b -> c -> Prop
, q :: a -> b -> Prop>.

f:(x:b -> c<p x>)
-> g:(x:a -> b<q x>)
-> y:a
-> exists[z:b<q y>].c<p z>

which gets automatically instantiated at usage sites, allowing LIQ-
UIDHASKELL to precisely track invariants through the use of the
ubiquitous higher-order operator.
Dependent Pairs Similarly, we can abstract refinements over the
definition of datatypes. For example, we can express dependent
pairs in LIQUIDHASKELL by refining the definition of tuples as:

data Pair a b <p :: a -> b -> Prop>
= Pair (x :: a) (y :: b<p x>)

That is, the second element y satisfies some refinement together
with the first x. Now we can define increasing and decreasing pairs

type IncP = Pair <{\x y -> x < y}> Int Int
type DecP = Pair <{\x y -> x > y}> Int Int

and then verify that:

up :: IncP
up = Pair 2 5

dn :: DecP
dn = Pair 5 2

Now that we have a bird’s eye view of the various specification
mechanisms supported by LIQUIDHASKELL, let us see how we can
profitably apply them to statically check a variety of correctness
properties in real-world codes.

3. Totality
Well typed Haskell code can go very wrong:

*** Exception: Prelude.head: empty list

As our first application, let us see how to use LIQUIDHASKELL to
statically guarantee the absence of such exceptions, i.e., to prove
various functions total.

3.1 Specifying Totality
First, let us see how to specify the notion of totality inside LIQUID-
HASKELL. Consider the source of the above exception:

head :: [a] -> a
head (x:_) = x

Luckily, most of the work towards totality checking is done by
GHC’s translation to its core IL [34]. In GHC-Core every function
is total, but may explicitly call an error function, that takes as input
a string that describes the source of failure and throws an exception.
For example head is translated into

head d = case d of
x:xs -> x
[] -> patError "head"

Since every core function is total, but may explicitly call error
functions, to prove that the source function is total, it suffices to
prove that patError will never be called. We can specify this
requirement by giving the error functions a false (i.e. uninhabited)
pre-condition:

patError :: {v:String | false } -> a

Given this signature, an expression containing a call to patError
will only type check if the call is dead code.

3.2 Verifying Totality
Of course, the (core) definition of head does not typecheck as is;
we require a pre-condition that states that the function is only called
with non-empty lists. Formally, we do so by defining the alias

predicate NonEmp X = 0 < len X

and then stipulating that

head :: {v:[a] | (NonEmp v)} -> a

To verify (the core) definition of head, LIQUIDHASKELL uses the
signature to check the body in an environment

d :: {0 < (len d)}

When d is matched with [], the environment is strengthened with
the corresponding refinement from the definition of len, i.e.,

d :: {0 < (len d) && (len d) = 0}

Since the formula above is a contradiction, LIQUIDHASKELL con-
cludes that the call to patError is dead code, and thereby verifies
the totality of head. Of course, now we have pushed the burden of
proof onto clients of head – at each such site, LIQUIDHASKELL
will check that the argument passed in is indeed a NonEmp list, and
if it successfully does so, then we at any uses of head can rest as-
sured that head will never throw an exception.

Refinements and Totality While the head example is quite simple,
in general, refinements make it very easy to prove totality in com-
plex situations, where we must track dependencies between inputs
and outputs. For example, consider the risers function from [21]:

risers [] = []
risers [x] = [[x]]
risers (x:y:zs)
| x <= y = (x:s) : ss
| otherwise = [x] : (s:ss)
where
s:ss = risers (y:etc)

The pattern match on the last line is partial; its core translation is

let (s, ss) = case risers (y:etc) of
s:ss -> (s, ss)
[] -> patError "..."

What if risers returns an empty list? Indeed, risers does, on
occasion, return an empty list per its first equation. However, on
close inspection, it turns out that if the input is non-empty, then the
output is also non-empty. Happily, we can specify this as:

risers :: l:_ -> {v:_ | NonEmp l => NonEmp v}

LIQUIDHASKELL verifies that risers meets the above speci-
fication, and hence that the patError is dead code as at that site,
the scrutinee is obtained from calling risers with a NonEmp list.

Total Totality Checking patError is one of many possible errors
thrown by non-total functions. The module Control.Exception
.Base contains several other such functions, e.g., recSelError,
irrefutPatError, nonExhaustiveGuardsError and so on, all
of which serve the same purpose: to make core translations total.
Rather than require the user to hunt down and specify false pre-
conditions one by one, the user may automatically turn on totality
checking by invoking LIQUIDHASKELL with the --totality
command line option, at which point the tool systematically checks
that all the above functions are indeed, dead code, and hence, that
all definitions are total.
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3.3 Case Studies
We verified totality of two libraries HsColour and Data.Map,
both of which had been proven total by catch [21].

Data.Map Data.Map is a widely used library for (immutable)
key-value maps, implemented as balanced binary search trees. To-
tality verification of Data.Map was quite straightforward. We had
previously verified termination and the crucial binary search invari-
ant [36]. To verify totality it sufficed to simply re-run verification
with the --totality argument. All the important specifications
were already captured by the types, and no additional changes were
needed to prove totality.

This case study illustrates an advantage of LIQUIDHASKELL
over specialized provers (e.g., catch), namely it can be used to
prove totality, termination and functional correctness at the same
time, facilitating a nice reuse of specifications for multiple tasks.

HsColour On the other hand, HsColour was not so easy. In
some cases assumptions are used about the structure of the input
data: For example, ACSS.splitSrcAndAnnos handles an input
list of Strings and assumes that whenever a specific String (say
breakS) appears then at least two Strings (call them mname and
annots) follow it in the list. Thus, for a list ls that starts with
breakS the irrefutable pattern (_:mname:annots)= ls should
be total. It is somewhat cumbersome to specify, let alone verify,
such properties, and these are interesting avenues for future work.
Thus to prove totality, we added a dynamic check that the length of
ls exceeds 2.

In other cases assertions were imposed via monadic checks, for
example HsColour.hs reads the input arguments and checks their
well-formedness using a when statement

when (length f > 1) $ errorOut "..."

Currently LIQUIDHASKELL does not support monadic reasoning
that allows assuming (length f <= 1) in the action that follows
when. Finally, code modifications were required to capture prop-
erties that currently we do not know how to express with LIQUID-
HASKELL. For example, trimContext initially checks whether
there exists an element that satisfies p in the list xs, and if so it cre-
ates ys = dropWhile (not . p)xs, and then calls the tail of
ys. By the check we know that ys has at least one element, the one
that satisfies p, a property that is not easily expressed via refinement
types.

On the whole, while proving totality can be cumbersome (as in
HsColour) it is a nice side benefit of refinement type checking,
and can sometimes be a fully automatic corollary of establishing
more interesting safety properties (as in Data.Map).

4. Termination
To soundly account for Haskell’s non-strict evaluation, a refine-
ment type checker must distinguish between terms that may poten-
tially diverge and those that will not [37]. Thus, by default, LIQ-
UIDHASKELL proves termination of each recursive function. For-
tunately, refinements make this onerous task quite straightforward.
We need simply associate a well-founded termination metric µ on
the function’s parameters, and then use refinement typing to check
that the metric strictly decreases at each recursive call. In practice,
due to a careful choice of defaults, this amounts to about a line of
termination-related hints per hundred lines of source.

Simple Metrics As a starting example, consider the fac function

fac :: n:Nat -> Nat / [n]
fac 0 = 1
fac n = n * fac (n-1)

The termination metric is simply the parameter n; as n is non-
negative and decreases at the recursive call, LIQUIDHASKELL ver-
ifies that fac will terminate. We specify the termination metric in
the type signature with the /[n].

Termination checking is performed at the same time as regu-
lar type checking, as it can be reduced to refinement type check-
ing with a special terminating fixpoint combinator [37]. Thus, if
LIQUIDHASKELL fails to prove that a given termination metric is
well-formed and decreasing, it will report a Termination Check
Error . At this point, the user can either debug the specification,

or mark the function as non-terminating.
Termination Expressions Sometimes, no single parameter de-
creases across recursive calls, but there is some expression that
forms the decreasing metric. For example recall range lo hi
(from § 2.2) which returns the list of Ints from lo to hi:

range lo hi
| lo < hi = lo : range (lo+1) hi
| otherwise = []

Here, neither parameter is decreasing (indeed, the first one is in-
creasing) but hi-lo decreases across each call. To account for such
cases, we can specify as the termination metric a (refinement logic)
expression over the function parameters. Thus, to prove termina-
tion, we could type range as:

lo:Int -> hi:Int -> [(Btwn lo hi)] / [hi-lo]

Lexicographic Termination The Ackermann function

ack m n
| m == 0 = n + 1
| n == 0 = ack (m-1) 1
| otherwise = ack (m-1) (ack m (n-1))

is curious as there exists no simple, natural-valued, termination
metric that decreases at each recursive call. However ack termi-
nates because at each call either m decreases or m remains the same
and n decreases. In other words, the pair (m,n) strictly decreases
according to a lexicographic ordering. Thus LIQUIDHASKELL sup-
ports termination metrics that are a sequence of termination expres-
sions. For example, we can type ack as:

ack :: m:Nat -> n:Nat -> Nat / [m, n]

At each recursive call LIQUIDHASKELL uses a lexicographic or-
dering to check that the sequence of termination expressions is de-
creasing (and well-founded in each component).
Mutual Recursion The lexicographic mechanism lets us check ter-
mination of mutually recursive functions, e.g. isEven and isOdd

isEven 0 = True
isEven n = isOdd $ n-1

isOdd n = not $ isEven n

Each call terminates as either isEven calls isOdd with a decreas-
ing parameter, or isOdd calls isEven with the same parameter,
expecting the latter to do the decreasing. For termination, we type:

isEven :: n:Nat -> Bool / [n, 0]
isOdd :: n:Nat -> Bool / [n, 1]

To check termination, LIQUIDHASKELL verifies that at each re-
cursive call the metric of the caller is less than the metric of the
callee. When isEven calls isOdd, it proves that the caller’s metric,
namely [n,0] is greater than the callee’s [n-1,1]. When isOdd
calls isEven, it proves that the caller’s metric [n,1] is greater

than the callee’s [n,0], thereby proving the mutual recursion al-
ways terminates.
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Recursion over Data Types The above strategies generalize easily
to functions that recurse over (finite) data structures like arrays,
lists, and trees. In these cases, we simply use measures to project
the structure onto Nat, thereby reducing the verification to the
previously seen cases. For example, we can prove that map

map f (x:xs) = f x : map f xs
map f [] = []

terminates, by typing map as

(a -> b) -> xs:[a] -> [b] / [len xs]

i.e., by using the measure len xs, from § 2.3, as the decreasing
metric.
Generalized Metrics Over Datatypes In many functions there is no
single argument whose (measure) provably decreases. Consider

merge (x:xs) (y:ys)
| x < y = x : merge xs (y:ys)
| otherwise = y : merge (x:xs) ys

from the homonymous sorting routine. Here, neither parameter
decreases, but the sum of their sizes does. To prove termination,
we can type merge as:

xs:[a] -> ys:[a] -> [a] / [len xs + len ys]

Putting it all Together The above techniques can be combined to
prove termination of the mutually recursive quick-sort

qsort (x:xs) = qpart x xs [] []
qsort [] = []

qpart x (y:ys) l r
| x > y = qpart x ys (y:l) r
| otherwise = qpart x ys l (y:r)

qpart x [] l r = app x (qsort l) (qsort r)

app k [] z = k : z
app k (x:xs) z = x : app k xs z

qsort (x:xs) calls qpart x xs to partition xs into two lists
l and r that have elements less and greater or equal than the
pivot x, respectively. When qpart finishes partitioning it mutually
recursively calls qsort to sort the two list and appends the results
with app. LIQUIDHASKELL proves sortedness as well [36] but let
us focus here on termination. To this end, we type the functions as:

qsort :: xs:_ -> _
/ [len xs, 0]

qpart :: _ -> ys:_ -> l:_ -> r:_ -> _
/ [len ys + len l + len r, 1 + len ys]

As before, LIQUIDHASKELL checks that at each recursive call the
caller’s metric is less than the callee’s. When qsort calls qpart
the length of the unsorted list len (x:xs) exceeds the len xs
+ len [] + len []. When qpart recursively calls itself the

first component of the metric is the same, but the length of the
unpartitioned list decreases, i.e. 1 + len y:ys exceeds 1 + len
ys. Finally, when qpart calls qsort we have len ys + len
l + len r exceeds both len l and len r, thereby ensuring

termination.
Automation: Default Size Measures The qsort example illus-
trates that while LIQUIDHASKELL is very expressive, devising ap-
propriate termination metrics can be tricky. Fortunately, such pat-
terns are very uncommon, and the vast majority of cases in real
world programs are just structural recursion on a datatype. LIQ-
UIDHASKELL automates termination proofs for this common case,
by allowing users to specify a default size measure for each data
type, e.g. len for [a]. Now, if explicit termination metric is given,

by default LIQUIDHASKELL assumes that the first argument whose
type has an associated size measure decreases. Thus, in the above,
we need not specify metrics for fac or map as the size measure is
automatically used to prove termination. This heuristic suffices to
automatically prove 67% of recursive functions terminating.
Disabling Termination Checking In Haskell’s lazy setting not
all functions are terminating. LIQUIDHASKELL provides two
mechanisms the disable termination proving. A user can disable
checking a single function by marking that function as lazy. For
example, specifying e.g. lazy repeat tells the tool to not prove
repeat terminates. Optionally, a user can disable termination
checking for a whole module by using the command line argument
--no-termination for the entire file.

5. Memory Safety
The terms “Haskell” and “pointer arithmetic” rarely occur in the
same sentence, yet many Haskell programs are constantly manipu-
lating pointers under the hood by way of using the Bytestring
and Text libraries. These libraries sacrifice safety for (much
needed) speed and are therefore natural candidates for verification
through LIQUIDHASKELL.

5.1 Bytestring
The single most important aspect of the Bytestring library [25],
our first case study, is its pervasive intermingling of high level
abstractions like higher-order loops, folds, and fusion, with low-
level pointer manipulations in order to achieve high-performance.
Bytestring is an appealing target for evaluating LIQUID-
HASKELL, as refinement types are an ideal way to statically en-
sure the correctness of the delicate pointer manipulations, errors in
which lie below the scope of dynamic protection.

The library spans 8 files (modules) totaling about 4,400 lines.
We used LIQUIDHASKELL to verify the library by giving pre-
cise types describing the sizes of internal pointers and bytestrings.
These types are used in a modular fashion to verify the implementa-
tion of functional correctness properties of higher-level API func-
tions which are built using lower-level internal operations. Next,
we show the key invariants and how LIQUIDHASKELL reasons pre-
cisely about pointer arithmetic and higher-order codes.
Key Invariants A (strict) ByteString is a triple of a payload
pointer, an offset into the memory buffer referred to by the pointer
(at which the string actually “begins”) and a length corresponding
to the number of bytes in the string, which is the size of the buffer
after the offset, that corresponds to the string. We define a measure
for the size of a ForeignPtr’s buffer, and use it to define the key
invariants as a refined datatype

measure fplen :: ForeignPtr a -> Int
data ByteString = PS
{ pay :: ForeignPtr Word8
, off :: {v:Nat | v <= (fplen pay)}
, len :: {v:Nat | off + v <= (fplen pay)} }

The definition states that the offset is a Nat no bigger than the
size of the payload’s buffer, and that the sum of the offset and
non-negative length is no more than the size of the payload buffer.
Finally, we encode a ByteString’s size as a measure.

measure bLen :: ByteString -> Int
bLen (PS p o l) = l

Specifications We define a type alias for a ByteString whose
length is the same as that of another, and use the alias to type the
API function copy, which clones ByteStrings.

type ByteStringEq B
= {v:ByteString | (bLen v) = (bLen B)}
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copy :: b:ByteString -> ByteStringEq b
copy (PS fp off len)
= unsafeCreate len $ \p ->

withForeignPtr fp $ \f ->
memcpy len p (f ‘plusPtr‘ off)

Pointer Arithmetic The simple body of copy abstracts a fair bit
of internal work. memcpy sz dst src, implemented in C and
accessed via the FFI is a potentially dangerous, low-level operation,
that copies sz bytes starting from an address src into an address
dst. Crucially, for safety, the regions referred to be src and dst
must be larger than sz. We capture this requirement by defining a
type alias PtrGE a N denoting GHC pointers that refer to a region
bigger than N bytes, and then specifying that the destination and
source buffers for memcpy are large enough.

type PtrN a N = {v:Ptr a | N <= (plen v)}
memcpy :: sz:CSize -> dst:PtrN a siz

-> src:PtrN a siz
-> IO ()

The actual output for copy is created and filled in using the
internal function unsafeCreate which is a wrapper around
create :: l:Nat -> f:(PtrN Word8 l -> IO ())

-> IO (ByteStringN l)
create l f = do

fp <- mallocByteString l
withForeignPtr fp $ \p -> f p
return $! PS fp 0 l

The type of f specifies that the action will only be invoked on
a pointer of length at least l, which is verified by propagating the
types of mallocByteString and withForeignPtr. The fact that
the action is only invoked on such pointers is used to ensure that the
value p in the body of copy is of size l. This, and the ByteString
invariant that the size of the payload fp exceeds the sum of off
and len, ensures that the call to memcpy is safe.
Higher Order Loops mapAccumR combines a map and a foldr
over a ByteString. The function uses non-trivial recursion, and
demonstrates the utility of abstract-interpretation based inference.
mapAccumR f z b
= unSP $ loopDown (mapAccumEFL f) z b

To enable fusion [6] loopDown uses a higher order loopWrapper
to iterate over the buffer with a doDownLoop action:
doDownLoop f acc0 src dest len

= loop len (len-1) (len-1) acc0
where
loop (w::Int) s d acc

| s < 0
= return (acc :*: d+1 :*: len - (d+1))
| otherwise
= do x <- peekByteOff src s

case f acc x of
(acc’ :*: NothingS) ->

loop (w-1) (s-1) d acc’
(acc’ :*: JustS x’) ->

pokeByteOff dest d x’
>> loop (w-1) (s-1) (d-1) acc’

The above function iterates across the src and dst pointers
from the right (by repeatedly decrementing the offsets s and d
starting at the high len down to -1). Low-level reads and writes
are carried out using the potentially dangerous peekByteOff and
pokeByteOff respectively. To ensure safety, we type these low
level operations with refinements stating that they are only invoked
with valid offsets VO into the input buffer p.
type VO P = {v:Nat | v < plen P}
peekByteOff :: p:Ptr b -> VO p -> IO a
pokeByteOff :: p:Ptr b -> VO p -> a -> IO ()

The function doDownLoop is an internal function. Via abstract
interpretation [28], LIQUIDHASKELL infers that (1) len is less
than the sizes of src and dest, (2) f (here, mapAccumEFL) al-
ways returns a JustS, so (3) source and destination offsets sat-
isfy 0 ≤ s, d < len, (4) the generated IO action returns a triple
(acc :*: 0 :*: len), thereby proving the safety of the ac-
cesses in loop and verifying that loopDown and the API function
mapAccumR return a Bytestring whose size equals its input’s.

To prove termination, we add a witness w. Though s decreases
at each call, it is not a Nat as it reaches -1. The system infers that
w decreases and is a Nat as it equals s+1, thus proving termination.
Nested Data Finally, consider group, which splits a string like "
aart" into the list ["aa","r","t"], i.e. a list of (a) non-empty
ByteStrings whose (b) total length equals that of the input. To
specify these requirements, we define a measure for the total length
of strings in a list and use it to write an alias for a list of non-empty
strings whose total length equals that of another string:

measure bLens :: [ByteString] -> Int
bLens ([]) = 0
bLens (x:xs) = bLen x + bLens xs

type ByteStringNE
= {v:ByteString | bLen v > 0}

type ByteStringsEq B
= {v:[ByteStringNE] | bLens v = bLen b}

LIQUIDHASKELL uses the above to verify that

group :: b:ByteString -> ByteStringsEq b
group xs
| null xs = []
| otherwise = let x = unsafeHead xs

xs’ = unsafeTail xs
(ys, zs) = spanByte x xs’

in (y ‘cons‘ ys) : group zs

The example illustrates why refinements are critical for proving ter-
mination. LIQUIDHASKELL determines that unsafeTail returns
a smaller ByteString than its input, and that each element re-
turned by spanByte is no bigger than the input, concluding that
zs is smaller than xs, and hence checking the body under the
termination-weakened environment.

To see why the output type holds, let’s look at spanByte, which
splits strings into a pair:

spanByte c ps@(PS x s l)
= inlinePerformIO $ withForeignPtr x $

\p -> go l (p ‘plusPtr‘ s) 0
where

go (w::Int) p i
| i >= l = return (ps, empty)
| otherwise = do

c’ <- peekByteOff p i
if c /= c’
then let b1 = unsafeTake i ps

b2 = unsafeDrop i ps
in return (b1, b2)

else go (w-1) p (i+1)

Via inference, LIQUIDHASKELL verifies the safety of the pointer
accesses, and determines that the sum of the lengths of the output
pair of ByteStrings equals that of the input ps. Termination
follows by inferring that the sum of the witness w and i equals
l.

5.2 Text
Next we present a brief overview of the verification of Text, which
is the standard library used for serious unicode text processing in
Haskell.
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Text uses byte arrays and stream fusion to guarantee perfor-
mance while providing a high-level API. In our evaluation of LIQ-
UIDHASKELL on Text [24], we focused on two types of proper-
ties: (1) the safety of array index and write operations, and (2) the
functional correctness of the top-level API. These are both made
more interesting by the fact that Text internally encodes charac-
ters using UTF-16, in which characters are stored in either two or
four bytes. Text is a vast library spanning 39 modules and 5,700
lines of code, however we focus on the 17 modules that are relevant
to the above properties. While we have verified exact functional
correctness size properties for the top-level API, we focus here on
the low-level functions and interaction with unicode.
Arrays and Texts A Text consists of an (immutable) Array of
16-bit words, an offset into the Array, and a length describing
the number of Word16s in the Text. The Array is created and
filled using a mutable MArray. All write operations in Text are
performed on MArrays in the ST monad, but they are frozen into
Arrays before being used by the Text constructor. We write a
measure denoting the size of an MArray and use it to type the write
and freeze operations.

measure malen :: MArray s -> Int
predicate EqLen A MA = alen A = malen MA
predicate Ok I A = 0 <= I < malen A
type VO A = {v:Int| Ok v A}

unsafeWrite :: m:MArray s
-> VO m -> Word16 -> ST s ()

unsafeFreeze :: m:MArray s
-> ST s {v:Array | EqLen v m}

Reasoning about Unicode The function writeChar (abbreviating
UnsafeChar.unsafeWrite) writes a Char into an MArray.
Text uses UTF-16 to represent characters internally, meaning that
every Char will be encoded using two or four bytes (one or two
Word16s).

writeChar marr i c
| n < 0x10000 = do

unsafeWrite marr i (fromIntegral n)
return 1

| otherwise = do
unsafeWrite marr i lo
unsafeWrite marr (i+1) hi
return 2

where n = ord c
m = n - 0x10000
lo = fromIntegral

$ (m ‘shiftR‘ 10) + 0xD800
hi = fromIntegral

$ (m .&. 0x3FF) + 0xDC00

The UTF-16 encoding complicates the specification of the function
as we cannot simply require i to be less than the length of marr; if
i were malen marr - 1 and c required two Word16s, we would
perform an out-of-bounds write. We account for this subtlety with
a predicate that states there is enough Room to encode c.

predicate OkN I A N = Ok (I+N-1) A
predicate Room I A C = if ord C < 0x10000

then OkN I A 1
else OkN I A 2

type OkSiz I A = {v:Nat | OkN I A v}
type OkChr I A = {v:Char | Room I A v}

Room i marr c says “if c is encoded using one Word16, then
i must be less than malen marr, otherwise i must be less than
malen marr - 1.” OkSiz I A is an alias for a valid number of
Word16s remaining after the index I of array A. OkChr specifies

the Chars for which there is room (to write) at index I in array A.
The specification for writeChar states that given an array marr,
an index i, and a valid Char for which there is room at index i
, the output is a monadic action returning the number of Word16
occupied by the char.

writeChar :: marr:MArray s
-> i:Nat
-> OkChr i marr
-> ST s (OkSiz i marr)

Bug Thus, clients of writeChar should only call it with suitable
indices and characters. Using LIQUIDHASKELL we found an error
in one client, mapAccumL, which combines a map and a fold over
a Stream, and stores the result of the map in a Text. Consider the
inner loop of mapAccumL.

outer arr top = loop
where
loop !z !s !i =
case next0 s of

Done -> return (arr, (z,i))
Skip s’ -> loop z s’ i
Yield x s’
| j >= top -> do
let top’ = (top + 1) ‘shiftL‘ 1
arr’ <- new top’
copyM arr’ 0 arr 0 top
outer arr’ top’ z s i

| otherwise -> do
let (z’,c) = f z x
d <- writeChar arr i c
loop z’ s’ (i+d)

where j | ord x < 0x10000 = i
| otherwise = i + 1

Let’s focus on the Yield x s’ case. We first compute the maxi-
mum index j to which we will write and determine the safety of a
write. If it is safe to write to j we call the provided function f on the
accumulator z and the character x, and write the resulting character
c into the array. However, we know nothing about c, in particular,
whether c will be stored as one or two Word16s! Thus, LIQUID-
HASKELL flags the call to writeChar as unsafe. The error can be
fixed by lifting f z x into the where clause and defining the write
index j by comparing ord c (not ord x). LIQUIDHASKELL (and
the authors) readily accepted our fix.

6. Functional Correctness Invariants
So far, we have considered a variety of general, application inde-
pendent correctness criteria. Next, let us see how we can use LIQ-
UIDHASKELL to specify and statically verify critical application
specific correctness properties, using two illustrative case studies:
red-black trees, and the stack-set data structure introduced in the
xmonad system.

6.1 Red-Black Trees
Red-Black trees have several non-trivial invariants that are ideal for
illustrating the effectiveness of refinement types, and contrasting
with existing approaches based on GADTs [16]. The structure can
be defined via the following Haskell type:

data Col = R | B
data Tree a = Leaf

| Node Col a (Tree a) (Tree a)

However, a Tree a is a valid Red-Black tree only if it satisfies
three crucial invariants:

• Order: The keys must be binary-search ordered, i.e. the key
at each node must lie between the keys of the left and right
subtrees of the node,
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• Color: The children of every red Node must be colored black,
where each Leaf can be viewed as black,

• Height: The number of black nodes along any path from each
Node to its Leafs must be the same.

Red-Black trees are especially tricky as various operations cre-
ate trees that can temporarily violate the invariants. Thus, while the
above invariants can be specified with singletons and GADTs, en-
coding all the properties (and the temporary violations) results in a
proliferation of data constructors that can somewhat obfuscate cor-
rectness. In contrast, with refinements, we can specify and verify
the invariants in isolation (if we wish) and can trivially compose
them simply by conjoining the refinements.
Color Invariant To specify the color invariant, we define a black-
rooted tree as:

measure isB :: Tree a -> Prop
color (Node c x l r) = c == B
color (Leaf) = true

and then we can describe the color invariant simply as:

measure isRB :: Tree a -> Prop
isRB (Leaf) = true
isRB (Node c x l r) = isRB l && isRB r &&

c == R => isB l &&
isB r

The insertion and deletion procedures create intermediate almost
red-black trees where the color invariant may be violated at the root.
Rather than create new data constructors we can define almost red-
black trees with a measure that just drops the invariant at the root:

measure almostRB :: Tree a -> Prop
almostRB (Leaf) = true
almostRB (Node c x l r) = isRB l && isRB r

Height Invariant To specify the height invariant, we define a black-
height measure:

measure bh :: Tree a -> Int
bh (Leaf) = 0
bh (Node c x l r) = bh l

+ if c = R then 0 else 1

and we can now specify black-height balance as:

measure isBal :: Tree a -> Prop
isBal (Leaf) = true
isBal (Node c x l r) = bh l = bh r

&& isBH l && isBH r

Note that bh only considers the left sub-tree, but this is legitimate,
because isBal will ensure the right subtree has the same bh.
Order Invariant Finally, to encode the binary-search ordering prop-
erty, we parameterize the datatype with abstract refinements:

data Tree a <l::a->a->Prop, r::a->a->Prop>
= Leaf
| Node { c :: Col

, key :: a
, lt :: Tree<l,r> a<l key>
, rt :: Tree<l,r> a<r key> }

Intuitively, l and r are relations between the root key and each
element in its left and right subtree respectively. Now the alias:

type OTree a
= Tree <{\k v -> v<k}, {\k v -> v>k}> a

describes binary-search ordered trees!
Composing Invariants Finally, we can compose the invariants, and
define a Red-Black tree with the alias:

type RBT a = {v:OTree a | isRB v && isBal v}

An almost Red-Black tree is the above with isRB replaced with
almostRB, i.e. does not require any new types or constructors. If
desired, we can ignore a particular invariant simply by replacing the
corresponding refinement above with true. Given the above – and
suitable signatures LIQUIDHASKELL verifies the various insertion,
deletion and rebalancing procedures for a Red-Black Tree library.

6.2 Stack Sets in XMonad
xmonad is a dynamically tiling X11 window manager that is
written and configured in Haskell. The set of windows managed
by XMonad is organized into a hierarchy of types. At the lowest
level we have a set of windows a represented as a Stack a

data Stack a = Stack { focus :: a
, up :: [a]
, down :: [a] }

The above is a zipper [13] where focus is the “current” window
and up and down the windows “before” and “after” it. Each Stack
is wrapped inside a Workspace that has additional information

about layout and naming:

data Workspace i l a = Workspace
{ tag :: i
, layout :: l
, stack :: Maybe (Stack a) }

which is in turn, wrapped inside a Screen:

data Screen i l a sid sd = Screen
{ workspace :: Workspace i l a
, screen :: sid
, screenDetail :: sd }

The set of all screens is represented by the top-level zipper:

data StackSet i l a sid sd = StackSet
{ cur :: Screen i l a sid sd
, vis :: [Screen i l a sid sd]
, hid :: [Workspace i l a]
, flt :: M.Map a RationalRect }

Key Invariant: Uniqueness of Windows The key invariant for the
StackSet type is that each window a should appear at most once
in a StackSet i l a sid sd. That is, a window should not be
duplicated across stacks or workspaces. Informally, we specify this
invariant by defining a measure for the set of elements in a list,
Stack, Workspace and Screen, and then we use that measure to
assert that the relevant sets are disjoint.
Specification: Unique Lists To specify that the set of elements in a
list is unique, i.e. there are no duplicates in the list we first define a
measure denoting the set using Z3 [7]’s built-in theory of sets:

measure elts :: [a] -> Set a
elts ([]) = emp
elts (x:xs) = cup (sng x) (elts xs)

Now, we can use the above to define uniqueness:

measure isUniq :: [a] -> Prop
isUniq ([]) = true
isUniq (x:xs) = notIn x xs && isUniq xs

where notIn is an abbreviation:

predicate notIn X S = not (mem X (elts S))

Specification: Unique Stacks We can use isUniq to define unique,
i.e., duplicate free, Stacks as:
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data Stack a = Stack
{ focus :: a
, up :: {v:[a] | Uniq1 v focus}
, down :: {v:[a] | Uniq2 v focus up} }

using the aliases

predicate Uniq1 V X
= isUniq V && notIn X V

predicate Uniq2 V X Y
= Uniq1 V X && disjoint Y V

predicate disjoint X Y
= cap (elts X) (elts Y) = emp

i.e. the field up is a unique list of elements different from focus,
and the field down is additionally disjoint from up.
Specification: Unique StackSets It is straightforward to lift the
elts measure to the Stack and the wrapper types Workspace and
Screen, and then correspondingly lift isUniq to [Screen] and [
Workspace]. Having done so, we can use those measures to refine
the type of StackSet to stipulate that there are no duplicates:

type UniqStackSet i l a sid sd
= {v: StackSet i l a sid sd | NoDups v}

using the predicate aliases

predicate NoDups V
= disjoint3 (hid V) (cur V) (vis V)
&& isUniq (vis V)
&& isUniq (hid V)

predicate disjoint3 X Y Z
= disjoint X Y
&& disjoint Y Z
&& disjoint X Z

LIQUIDHASKELL automatically turns the record selectors of re-
fined data types to measures that return the values of appropriate
fields, hence hid x (resp. cur x, vis x) are the values of the hid
, cur and vis fields of a StackSet named x.
Verification LIQUIDHASKELL uses the above refined type to verify
the key invariant, namely, that no window is duplicated. Three key
actions of the, eventually successful, verification process can be
summarized as follows:

• Strengthening library functions. xmonad repeatedly concate-
nates the list fields of a Stack. To prove that for some ‘s::Stack
a‘, ‘(up s ++ down s)‘ is a unique list, the type of ‘(++)‘ needs
to capture that concatenation of two unique and disjoint lists
is a unique list. For verification, we assumed that Prelude’s
‘(++)‘ satisfies this property. But, not all arguments of ‘(++)‘
are unique disjoint lists: "StackSet"++ "error" is a triv-
ial example that does not satisfy the assumed preconditions of
‘(++)‘ thus creating a type error. Currently, LIQUIDHASKELL
does not support intersection types, thus we used an unrefined
‘(++.)‘ variant of ‘(++)‘ for such cases.

• Restrict the functions’ domain. modify is a maybe like func-
tion that given a default value x, a function f and a StackSet s,
applies f on the Maybe (Stack a) values inside s.

modify :: x:{v:Maybe (Stack a) | isNothing v}
-> (y:Stack a

-> Maybe {v:Stack a | SubElts v y})
-> UniqStackSet i l a s sd
-> UniqStackSet i l a s sd

Since inside the StackSet s each y:Stack a could be replaced
with either the default value x or with f y we need to ensure
that both these alternatives will not insert duplicates. This im-
poses the curious precondition that the default value should be
Nothing.

• Code inlining Given a tag i and a StackSet s, view i s will
set the current Screen to the screen with tag i, if such screen
exists in s. Below is the original definition for view in case
when a screen with tag i exists in visible screens

view :: (Eq s, Eq i) => i
-> StackSet i l a s sd
-> StackSet i l a s sd

view i s
| Just x <- find ((i==).tag.workspace)

(visible s)
= s { current = x

, visible = current s
: deleteBy (equating screen) x

(visible s) }

Verification of this code is difficult as we cannot suitably type
find. Instead we inline the call to find and the field update
into a single recursive function raiseIfVisible i s that in-
place replaces x with the current screen.

7. Evaluation
We now turn to a quantitative evaluation of our experiments with
LIQUIDHASKELL.

7.1 Results
We have used the following libraries as benchmarks:

• GHC.List and Data.List, which together implement many
standard list operations; we verify various size related proper-
ties,

• Data.Set.Splay, which implements a splay-tree based
functional set data type; we verify that all interface functions
terminate and return well ordered trees,

• Data.Map.Base, which implements a functional map data
type; we verify that all interface functions terminate and return
binary-search ordered trees [36],

• HsColour, a syntax highlighting program for Haskell code,
we verify totality of all functions (§ 3.3),

• XMonad, a tiling window manager for X11, we verify the
uniqueness invariant of the core datatype, as well as some of
the QuickCheck properties (§ 6.2),

• Bytestring, a library for manipulating byte arrays, we ver-
ify termination, low-level memory safety, and high-level func-
tional correctness properties (§ 5.1),

• Text, a library for high-performance unicode text process-
ing; we verify various pointer safety and functional correctness
properties (§ 5.2), during which we find a subtle bug,

• Vector-Algorithms, which includes a suite of “impera-
tive” (i.e. monadic) array-based sorting algorithms; we verify
the correctness of vector accessing, indexing, and slicing etc..

Table 1 summarizes our experiments, which covered 56 mod-
ules totaling 14,623 non-comment lines of source code and 1,971
lines of specifications. The results are on a machine with an In-
tel Xeon X5660 and 32GB of RAM (no benchmark required more
than 1GB.) The upshot is that LIQUIDHASKELL is very effec-
tive on real-world code bases. The total overhead due to hints, i.e.
the sum of Annot and Qualif, is 2.7% of LOC. The specifica-
tions themselves are machine checkable versions of the comments
placed around functions describing safe usage and behavior, and re-
quired around two lines to express on average. While there is much
room for improving the running times, the tool is fast enough to be
used interactively, verify a handful of API functions and associated
helpers in isolation.
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Module LOC Mod Fun Specs Annot Qualif Time (s)
DATA.LIST 620 1 97 14 / 22 5 / 5 0 / 0 15
GHC.LIST 414 1 66 29 / 38 6 / 6 0 / 0 14
DATA.MAP.BASE 1654 1 180 125 / 173 13 / 13 0 / 0 172
DATA.SET.SPLAY 303 1 35 27 / 37 5 / 5 0 / 0 25
HSCOLOUR 1113 16 234 19 / 40 5 / 5 1 / 1 195
XMONAD.STACKSET 489 1 106 74 / 213 3 / 3 4 / 4 28
BYTESTRING 4442 8 569 307 / 465 55 / 55 47 / 124 284
TEXT 4076 17 493 305 / 717 52 / 54 49 / 97 481
VECTOR-ALGORITHMS 1512 10 99 76 / 266 9 / 9 13 / 13 84
Total 14623 56 1879 976 / 1971 153 / 155 114 / 239 1304

Table 1. A quantitative evaluation of our experiments. LOC is the number of non-comment lines of source code as reported by sloccount. Mod is
the number of modules in the benchmark and Fun is the number of functions. Specs is the number (/ line-count) of type specifications and aliases, data
declarations, and measures provided. Annot is the number (/ line-count) of other annotations provided, these include invariants and hints for the termination
checker. Qualif is the number (/ line-count) of provided qualifiers. Time (s) is the time, in seconds, required to run LIQUIDHASKELL.

7.2 Discussion
Our case studies also highlighted some limitations of LIQUID-
HASKELL that we will address in future work. In most cases, we
could alter the code slightly to facilitate verification.
Ghost parameters are sometimes needed in order to materialize
values that are not needed for the computation, but are necessary to
prove various specifications. For example, the piv parameter in the
append function for red-black trees (§ 6.1).
Higher-order functions must sometimes be specialized because
the original type is not precise enough. For example, the concat
function that concatenates a list of input ByteStrings pre-allocates
the output region by computing the total size of the input.
len = sum . map length $ xs

Unfortunately, the type for map is not sufficiently precise to con-
clude that the value len equals bLens xs, se we must manually
specialize the above into a single recursive traversal that computes
the lengths. Rather than complicating the type system with a very
general higher-order type for map we suspect the best way forward
will be to allow the user to specify inlining in a clean fashion.
Lazy binders sometimes get in the way of verification. A common
pattern in Haskell code is to define all local variables in a single
where clause and use them only in a subset of all branches. LIQ-
UIDHASKELL flags a few such definitions as unsafe, not realizing
that the values will only be demanded in a specific branch. Cur-
rently, we manually transform the code by pushing binders inwards
to the usage site. This transformation could be easily automated.
Assumes which can be thought of as “hybrid” run-time checks,
had to be placed in a couple of cases where the verifier loses
information. One source is the introduction of assumptions about
mathematical operators that are currently conservatively modeled
in the refinement logic (e.g. that multiplication is commutative and
associative). These may be removed by using more advanced non-
linear arithmetic decision procedures.

8. Related Work
Next, we situate LIQUIDHASKELL with existing Haskell verifiers.
Dependent Types are the basis of many verifiers, or more gener-
ally, proof assistants. Verification of haskell code is possible with
“full” dependently typed systems like Coq [3], Agda [23], Idris [4],
Omega [32], and λ→ [19]. While these systems are highly expres-
sive, their expressiveness comes at the cost of making logical valid-
ity checking undecidable thus rendering verification cumbersome.
Haskell itself can be considered a dependently-typed language, as
type level computation is allowed via Type Families [20], Singleton
Types[9], Generalized Algebraic Datatypes (GADTs) [27, 30], and
type-level functions [5]. Again, verification in haskell itself turns
out to be quite painful [18].

Refinement Types are a form of dependent types where invariants
are encoded via a combination of types and predicates from a
restricted SMT-decidable logic [2, 8, 29, 40]. LIQUIDHASKELL
uses Liquid Types [17] that restrict the invariants even more to
allow type inference, a crucial feature of a usable type system. Even
though the language of refinements is restricted, as we presented,
the combination of Abstract Refinements [36] with sophisticated
measure definitions allows specification and verification of a wide
variety of program properties.
Static Contract Checkers like ESCJava [11] are a classical way
of verifying correctness through assertions and pre- and post-
conditions. [41] describes a static contract checker for Haskell
that uses symbolic execution to unroll procedures upto some fixed
depth, yielding weaker “bounded” soundness guarantees. Simi-
larly, Zeno [33] is an automatic Haskell prover that combines un-
rolling with heuristics for rewriting and proof-search. Finally, the
Halo [38] contract checker encodes Haskell programs into first-
order logic by directly modeling the code’s denotational semantics,
again, requiring heuristics for instantiating axioms describing func-
tions’ behavior.
Totality Checking is feasible by GHC itself, via an option flag that
warns of any incomplete patterns. Regrettably, GHC’s warnings are
local, i.e. GHC will raise a warning for head’s partial definition,
but not for its caller, as the programmer would desire. Catch [21],
a fully automated tool that tracks incomplete patterns, addresses
the above issue by computing functions’ pre- and post-conditions.
Moreover, catch statically analyses the code to track reachable in-
complete patterns. LIQUIDHASKELL allows more precise analysis
than catch, thus, by assigning the appropriate types to ?Error func-
tions (§ 3) it tracks reachable incomplete patters as a side-effect of
verification.
Termination Analysis is crucial for LIQUIDHASKELL’s sound-
ness [37] and is implemented in a technique inspired by [39],
Various other authors have proposed techniques to verify termi-
nation of recursive functions, either using the “size-change princi-
ple” [15, 31], or by annotating types with size indices and verifying
that the arguments of recursive calls have smaller indices [1, 14]. To
our knowledge, none of the above analyses have been empirically
evaluated on large and complex real-world libraries.

AProVE [12] implements a powerful, fully-automatic termina-
tion analysis for Haskell based on term-rewriting. Compared to
AProVE, encoding the termination proof via refinements provides
advantages that are crucial in large, real-world code bases. Specif-
ically, refinements let us (1) prove termination over a subset (not
all) of inputs; many functions (e.g. fac) terminate only on Nat in-
puts and not all Ints, (2) encode pre-conditions, post-conditions,
and auxiliary invariants that are essential for proving termination,
(e.g. qsort), (3) easily specify non-standard decreasing metrics
and prove termination, (e.g. range). In each case, the code could be
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(significantly) rewritten to be amenable to AProVE but this defeats
the purpose of an automatic checker.
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[19] Andres Löh, Conor McBride, and Wouter Swierstra. A tutorial imple-
mentation of a dependently typed lambda calculus. Fundam. Inform.,
2010.

[20] Conor McBride. Faking it: Simulating dependent types in haskell. J.
Funct. Program., 2002.

[21] Neil Mitchell and Colin Runciman. Not all patterns, but enough -
an automatic verifier for partial but sufficient pattern matching. In
Haskell, 2008.

[22] G. Nelson. Techniques for program verification. Technical Report
CSL81-10, Xerox Palo Alto Research Center, 1981.

[23] U. Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Chalmers, 2007.

[24] B. O’Sullivan and T. Harper. text-0.11.2.3: An efficient packed uni-
code text type. http://hackage.haskell.org/package/
text-0.11.2.3.

[25] B. O’Sullivan, S. Marlow, D. Roundy, and D. Stewart. bytestring-
0.9.2.1. http://hackage.haskell.org/package/
bytestring-0.9.2.1.

[26] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification
system. In CADE, 1992.

[27] S. L. Peyton-Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Sim-
ple unification-based type inference for GADTs. In ICFP, 2006.

[28] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, 2008.

[29] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications:
Predicate subtyping in pvs. IEEE TSE, 1998.

[30] T. Schrijvers, S. L. Peyton-Jones, M. Sulzmann, and D. Vytiniotis.
Complete and decidable type inference for gadts. In ICFP, 2009.

[31] D. Sereni and N.D. Jones. Termination analysis of higher-order func-
tional programs. In APLAS, 2005.

[32] T. Sheard. Type-level computation using narrowing in omega. In
PLPV, 2006.

[33] W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: An automated
prover for properties of recursive data structures. In TACAS, 2012.

[34] M. Sulzmann, M. M. T. Chakravarty, S. L. Peyton-Jones, and K. Don-
nelly. System F with type equality coercions. In TLDI, 2007.

[35] N. Swamy, J. Chen, C. Fournet, P-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. In ICFP,
2011.

[36] N. Vazou, P. Rondon, and R. Jhala. Abstract refinement types. In
ESOP, 2013.

[37] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones.
Refinement types for haskell. In ICFP, 2014.

[38] D. Vytiniotis, S.L. Peyton-Jones, K. Claessen, and D. Rosén. Halo:
haskell to logic through denotational semantics. In POPL, 2013.

[39] H. Xi. Dependent types for program termination verification. In LICS,
2001.

[40] H. Xi and F. Pfenning. Eliminating array bound checking through
dependent types. In PLDI, 1998.

[41] D. N. Xu, S. L. Peyton-Jones, and K. Claessen. Static contract check-
ing for haskell. In POPL, 2009.

[42] C. Zenger. Indexed types. TCS, 1997.

12 2014/5/11

http://hackage.haskell.org/package/text-0.11.2.3
http://hackage.haskell.org/package/text-0.11.2.3
http://hackage.haskell.org/package/bytestring-0.9.2.1
http://hackage.haskell.org/package/bytestring-0.9.2.1

	Introduction
	LiquidHaskell
	Specifications
	Verification
	Measures
	Refined Data Types
	Refined Type Classes
	Abstracting Refinements

	Totality
	Specifying Totality
	Verifying Totality
	Case Studies

	Termination
	Memory Safety
	Bytestring
	Text

	Functional Correctness Invariants
	Red-Black Trees
	Stack Sets in XMonad

	Evaluation
	Results
	Discussion

	Related Work

